On Bifurcations in Nonlinear Consensus Networks | Journal of Nonlinear Science
Skip to main content

On Bifurcations in Nonlinear Consensus Networks

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

The theory of consensus dynamics is widely employed to study various linear behaviors in networked control systems. Moreover, nonlinear phenomena have been observed in animal groups, power networks and in other networked systems. These observations inspire the development in this paper of three novel approaches to define distributed nonlinear dynamical interactions. The resulting dynamical systems are akin to higher-order nonlinear consensus systems. Over connected undirected graphs, the resulting dynamical systems exhibit various interesting behaviors that we rigorously characterize.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arcak, M.: Passivity as a design tool for group coordination. IEEE Trans. Autom. Control 52(8), 1380–1390 (2007)

    Article  MathSciNet  Google Scholar 

  • Ashwin, P., Burylko, O., Maistrenko, Y.: Bifurcation to heteroclinic cycles and sensitivity in three and four coupled phase oscillators. Physica D 237(4), 454–466 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Bogacz, R., Brown, E., Moehlis, J., Holmes, P., Cohen, J.D.: The physics of optimal decision making: A formal analysis of performance in two-alternative forced choice tasks. Psychol. Rev. 113(4), 700–765 (2006)

    Article  Google Scholar 

  • Bullo, F., Cortés, J., Martínez, S.: Distributed Control of Robotic Networks. Applied Mathematics Series. Princeton University Press, Princeton (2009). Available at http://www.coordinationbook.info

    MATH  Google Scholar 

  • Couzin, I.D., Krause, J., Franks, N.R., Levin, S.A.: Effective leadership and decision-making in animal groups on the move. Nature 433(7025), 513–516 (2005)

    Article  Google Scholar 

  • Dionne, B., Golubitsky, M., Stewart, I.: Coupled cells with internal symmetry. Nonlinearity 9, 559–599 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Dörfler, F., Francis, B.: Geometric analysis of the formation problem for autonomous robots. IEEE Trans. Automat. Contol 55(10), 2379–2384 (2010)

    Article  Google Scholar 

  • Fax, J.A., Murray, R.M.: Information flow and cooperative control of vehicle formations. IEEE Trans. Autom. Control 49(9), 1465–1476 (2004)

    Article  MathSciNet  Google Scholar 

  • Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control 48(6), 988–1001 (2003)

    Article  MathSciNet  Google Scholar 

  • Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall, New York (2002)

    MATH  Google Scholar 

  • Kimura, M., Moehlis, J.: Novel vehicular trajectories for collective motion from coupled oscillator steering control. SIAM J. Appl. Dyn. Syst. 7(4), 1191–1212 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Kwatny, H., Pasrija, A., Bahar, L.: Static bifurcations in electric power networks: Loss of steady-state stability and voltage collapse. IEEE Trans. Circuits Syst. 33(10), 981–991 (1986)

    Article  MATH  Google Scholar 

  • Lin, J., Morse, A.S., Anderson, B.D.O.: The multi-agent rendezvous problem. Part 1: The synchronous case. SIAM J. Control Optim. 46(6), 2096–2119 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Lorenz, J.: Continuous opinion dynamics under bounded confidence: A survey. Int. J. Mod. Phys. C 18(12), 1819–1838 (2007)

    Article  MATH  Google Scholar 

  • Nabet, B., Leonard, N.E., Couzin, I.D., Levin, S.A.: Dynamics of decision making in animal group motion. J. Nonlinear Sci. 19(4), 399–435 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95(1), 215–233 (2007)

    Article  Google Scholar 

  • Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004)

    Article  MathSciNet  Google Scholar 

  • Olien, L., Bélair, J.: Bifurcations, stability, and monotonicity properties of a delayed neural network model. Physica D 102(3-4), 349–363 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Papachristodoulou, A., Jadbabaie, A.: Synchronization in oscillator networks with heterogeneous delays, switching topologies and nonlinear dynamics. In: IEEE Conf. on Decision and Control, San Diego, CA, December 2006, pp. 4307–4312 (2006)

    Google Scholar 

  • Poulakakis, I., Scardovi, L., Leonard, N.E.: Coupled stochastic differential equations and collective decision making in the Two-Alternative Forced-Choice task. In: American Control Conference, pp. 69–74 (2010)

    Google Scholar 

  • Roxin, A., Ledberg, A.: Neurobiological models of two-choice decision making can be reduced to a one-dimensional nonlinear diffusion equation. PLoS Comput. Biol. 4(3), e1000046 (2008)

    Article  MathSciNet  Google Scholar 

  • Spanos, D.P., Olfati-Saber, R., Murray, R.M.: Approximate distributed Kalman filtering in sensor networks with quantifiable performance. In: Symposium on Information Processing of Sensor Networks, Los Angeles, CA, April 2005, pp. 133–139 (2005)

    Chapter  Google Scholar 

  • Srivastava, V., Moehlis, J., Bullo, F.: On bifurcations in nonlinear consensus networks. In: American Control Conference, Baltimore, MD, June 2010, pp. 1647–1652 (2010)

    Google Scholar 

  • Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Perseus Books Group, New York City (2000)

    Google Scholar 

  • Tanner, H.G., Jadbabaie, A., Pappas, G.J.: Flocking in fixed and switching networks. IEEE Trans. Autom. Control 52(5), 863–868 (2007)

    Article  MathSciNet  Google Scholar 

  • Wei, J., Ruan, S.: Stability and bifurcation in a neural network model with two delays. Physica D 130(3-4), 255–272 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Zou, F., Nossek, J.A.: Bifurcation and chaos in cellular neural networks. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 40(3), 166–173 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaibhav Srivastava.

Additional information

Communicated by R. Sepulchre.

A preliminary version of this work (Srivastava et al. 2010) was presented at the 2010 American Control Conference, Baltimore, MD, USA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivastava, V., Moehlis, J. & Bullo, F. On Bifurcations in Nonlinear Consensus Networks. J Nonlinear Sci 21, 875–895 (2011). https://doi.org/10.1007/s00332-011-9103-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-011-9103-4

Keywords

Mathematics Subject Classification (2000)