A Numerical Investigation on Configurational Distortions in Nematic Liquid Crystals | Journal of Nonlinear Science Skip to main content
Log in

A Numerical Investigation on Configurational Distortions in Nematic Liquid Crystals

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

When subjected to magnetic or electric fields, nematic liquid crystals confined between two parallel glass plates and initially uniformly oriented may undergo homogeneous one-dimensional spatial distortions (Fréedericksz and Zolina, Trans. Faraday Soc. 29:919, 1933) or periodic distortions (Lonberg and Meyer, Phys. Rev. Lett. 55(7):718–721, 1985; and Srajer et al., Phys. Rev. Lett. 67(9):1102–1105, 1991). According to the experimental observations, periodic phases are stable configurations at intermediate intensity of the acting field, while homogeneous phases are stable at higher strengths.

We present a fully nonlinear finite element approach able to describe homogeneous and periodic configurational phases in a cell of confined nematic liquid crystal with strong planar anchoring boundary conditions. Stationary configurations are obtained by setting to zero the first variation of the discretized total energy of the system. Unstable configurations are identified by evaluating the behavior of the solution under small numerical perturbations. Numerical calculations are able to describe the evolution of the configurational distortions as a function of the applied field and are able to capture the critical points between homogeneous and periodic phases. The proposed approach has been proved to be an excellent tool to predict the existence of unstable or metastable distortions, characterized by higher energy levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allender, D.W., Hornreich, R.M., Johnson, D.L.: Theory of the stripe phase in bend-Fréedericksz-geometry nematic films. Phys. Rev. Lett. 59, 2654–2657 (1987)

    Article  Google Scholar 

  • Amoddeo, A., Barbieri, R., Lombardo, G.: Electric field-induced fast nematic order dynamics liquid crystals. Liq. Cryst. 38(1), 93–103 (2011)

    Article  Google Scholar 

  • Barbero, G., Evangelista, L.R.: Ground states of nematic liquid crystals. Phys. Lett. A 356, 156–159 (2006)

    Article  MATH  Google Scholar 

  • Davis, T.A., Gartland, E.C. Jr.: Finite element analysis of the Landau–De Gennes minimization problem for liquid crystals. SIAM J. Numer. Anal. 35(1), 336–362 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • de Gennes, P.G., Prost, J.: The Physics of Liquid Crystals. Clarendon Press, Oxford (1993)

    Google Scholar 

  • Demmel, J.W., Eisenstat, S.C., Gilbert, J.R., Li, X.S., Liu, J.W.H.: A supernodal approach to sparse partial pivoting. SIAM J. Matrix Anal. Appl. 20(3), 720–755 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Deuling, H.: Deformation of nematic liquid crystals in an electric field. Mol. Cryst. Liq. Cryst. 19, 123–131 (1972)

    Article  Google Scholar 

  • Di Pasquale, F., Fernández, F.A., Day, S.E., Davies, J.B.: Two-dimensional finite-element modeling of nematic liquid crystal devices for optical communications and displays. IEEE J. Sel. Top. Quantum Electron. 2(1), 128–134 (1996)

    Article  Google Scholar 

  • Di Pasquale, F., Deng, H.F., Fernández, F.A., Day, S.E., Davies, J.B., Johnson, M.T., van der Put, A.A., van de Eerenbeemd, J.M.A., van Haaren, J.A.M.M., Chapman, J.A.: Theoretical and experimental study of nematic liquid crystal display cells using the in-plane-switching mode. IEEE Trans. Electron Devices 46(4), 661–668 (1999)

    Article  Google Scholar 

  • Ericksen, J.L.: Inequalities in liquid crystal theory. Phys. Fluids 9(18–19), 1205 (1966)

    Article  Google Scholar 

  • Fernández, F.A., Day, S.E., Trwoga, P., Deng, H.F., James, R.: Three-dimensional modelling of liquid crystal display cells using finite elements. Mol. Cryst. Liq. Cryst. 375, 291–299 (2002)

    Article  Google Scholar 

  • Frank, F.C.: On the theory of liquid crystals. Discuss. Trans. Faraday Soc. 25, 19–25 (1958)

    Article  Google Scholar 

  • Fréedericksz, V., Zolina, V.: Forces causing the orientation of an anisotropic liquid. Trans. Faraday Soc. 29, 919 (1933)

    Article  Google Scholar 

  • Gartland, E.C., Jr.: Structures and structural phase transitions in confined liquid crystal systems. Technical Report ICM-199511-03, Institute for Computational Mathematics, Department of Mathematics and Computer Science, Kent State University, pp. 1–17 (1995)

  • Golovaty, D., Gross, L.K., Hariharan, S.I., Gartland, E.C., Jr.: New ground state for the splay-Fréedericksz transition in a polymeric nematic liquid crystal. J. Math. Anal. Appl. 255, 391–403 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Gooden, C., Mahmood, R., Brisbin, D., Baldwin, A., Johnson, D.L., Neubert, M.E.: Simultaneous magnetic deformation and light-scattering study of bend and twist elastic constant divergence at the neumatic-smectic-A phase transition. Phys. Rev. Lett. 54, 1035–1038 (1985)

    Article  Google Scholar 

  • Gruler, H., Meier, G.: Electric field-induced deformations in oriented liquid crystals of the nematic. Mol. Cryst. Liq. Cryst. 16, 299 (1972)

    Article  Google Scholar 

  • James, R., Willman, E., Fernández, F.A., Day, S.E.: Finite element modeling of liquid crystal hydrodynamics with a variable degree of order. IEEE Trans. Electron Devices 53(7), 1575–1582 (2006)

    Article  Google Scholar 

  • Krzyzanski, D., Derfel, G.: Magnetic-field-induced periodic deformations in planar nematic layers. Phys. Rev. E 61(6), 6663–6668 (2000)

    Article  Google Scholar 

  • Lin, P., Liu, C.: Simulations of singularity dynamics in liquid crystal flows: a C0 finite element approach. J. Comput. Phys. 215, 348–362 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Lin, P., Liu, C., Zhang, H.: An energy law preserving C0 finite element scheme for simulating the kinematic effects in liquid crystal dynamics. J. Comput. Phys. 227, 1411–1427 (2008)

    Article  MathSciNet  Google Scholar 

  • Lonberg, F., Meyer, R.B.: New ground state for the splay-Fréedericksz transition in a polymeric nematic liquid crystal. Phys. Rev. Lett. 55(7), 718–721 (1985)

    Article  Google Scholar 

  • Miraldi, E., Oldano, C., Strigazzi, A.: Periodic Fréedericksz transition for nematic-liquid-crystal cells with weak anchoring. Phys. Rev. A 34(5), 4348–4352 (1986)

    Article  Google Scholar 

  • Napoli, G.: Weak anchoring effects in elecrically driven Fréedericksz transitions. J. Phys. A, Math. Gen. 39, 11–31 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Rapini, A., Papoular, M.: Distortion d’une lamelle nématique sous champ magnétique. Conditions d’angrage aux paroix. J. Phys., Colloq. C4, 54 (1969)

    Google Scholar 

  • Self, C.P., Please, R.H., Sluckin, T.J.: Deformation of nematic liquid crystals in an electric field. Eur. J. Appl. Math. 13, 1–23 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Srajer, G., Lonberg, F., Meyer, R.B.: Field-induced first-order phase transition and spinoidal point in nematic liquid crystals. Phys. Rev. Lett. 67(9), 1102–1105 (1991)

    Article  Google Scholar 

  • Virga, E.G.: Variational Theories for Liquid Crystals. Chapman & Hall, London (1994)

    MATH  Google Scholar 

  • Zimmermann, W., Kramer, L.: Periodic splay-twist Fréedericksz transition in nematic liquid crystals. Phys. Rev. Lett. 56(24), 2655 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Pandolfi.

Additional information

Communicated by P. Newton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandolfi, A., Napoli, G. A Numerical Investigation on Configurational Distortions in Nematic Liquid Crystals. J Nonlinear Sci 21, 785–809 (2011). https://doi.org/10.1007/s00332-011-9100-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-011-9100-7

Keywords

Mathematics Subject Classification (2000)

Navigation