Action Minimising Fronts in General FPU-type Chains | Journal of Nonlinear Science Skip to main content
Log in

Action Minimising Fronts in General FPU-type Chains

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We study atomic chains with nonlinear nearest neighbour interactions and prove the existence of fronts (heteroclinic travelling waves with constant asymptotic states). Generalising recent results of Herrmann and Rademacher we allow for non-convex interaction potentials and find fronts with non-monotone profile. These fronts minimise an action integral and can only exists if the asymptotic states fulfil the macroscopic constraints and if the interaction potential satisfies a geometric graph condition. Finally, we illustrate our findings by numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aubry, S., Proville, L.: Pressure fronts in 1D nonlinear lattices. In: Proceedings of EQUADIFF-07 (2007, to appear). See arXiv:0910.4890

  • Balk, A.M., Cherkaev, A., Slepyan, L.: Dynamics of chains with non-monotone stress-strain relations. I. Model and numerical experiments. J. Mech. Phys. Solids 49, 131–148 (2001a)

    Article  MATH  MathSciNet  Google Scholar 

  • Balk, A.M., Cherkaev, A., Slepyan, L.: Dynamics of chains with non-monotone stress-strain relations. II. Nonlinear waves and waves of phase transition. J. Mech. Phys. Solids 49, 149–171 (2001b)

    Article  MATH  MathSciNet  Google Scholar 

  • Dreyer, W., Herrmann, M., Mielke, A.: Micro-macro transition for the atomic chain via Whitham’s modulation equation. Nonlinearity 19(2), 471–500 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Friesecke, G., Matthies, K.: Atomic-scale localization of high-energy solitary waves on lattices. Physica D 171, 211–220 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Fermi, E., Pasta, J., Ulam, S.: Studies on nonlinear problems. Los Alamos Scientific Laboraty Report LA-1940 (1955). Reprinted in: Mattis, D.C. (ed.) The Many Body Problem. World Scientific, Singapore (1993)

  • Filip, A.-M., Venakides, S.: Existence and modulation of traveling waves in particle chains. Commun. Pure Appl. Math. 51(6), 693–735 (1999)

    Article  MathSciNet  Google Scholar 

  • Friesecke, G., Wattis, J.A.D.: Existence theorem for solitary waves on lattices. Commun. Math. Phys. 161(2), 391–418 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  • Herrmann, M.: Unimodal wave trains and solitons in convex FPU chains. Preprint, see arXiv:0901.3736 (2009)

  • Herrmann, M., Rademacher, J.D.M.: Heteroclinic travelling waves in convex FPU-type chains. SIAM J. Math. Anal. 42(4), 1483–1504 (2010a)

    Article  MathSciNet  Google Scholar 

  • Herrmann, M., Rademacher, J.D.M.: Riemann solvers and undercompressive shocks of convex FPU chains. Nonlinearity 23(2), 277–304 (2010b)

    Article  MATH  MathSciNet  Google Scholar 

  • Iooss, G., James, G.: Localized waves in nonlinear oscillator chains. Chaos 15, 015113 (2005)

    Article  MathSciNet  Google Scholar 

  • Iooss, G.: Travelling waves in the Fermi–Pasta–Ulam lattice. Nonlinearity 13, 849–866 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  • Kreiner, C.F., Zimmer, J.: Heteroclinic travelling waves for the lattice sine-Gordon equation with linear pair interaction. Discrete Contin. Dyn. Syst. Ser. A 25(3), 915–931 (2009a)

    Article  MATH  MathSciNet  Google Scholar 

  • Kreiner, C.F., Zimmer, J.: Travelling wave solutions for the discrete sine-Gordon equation with nonlinear pair interaction. Nonlinear Anal., Theory Methods Appl. 70(9), 3146–3158 (2009b)

    Article  MATH  MathSciNet  Google Scholar 

  • LeFloch, P.G.: Hyperbolic Systems of Conservation Laws. Lectures in Mathematics. ETH, Zürich (2002)

    MATH  Google Scholar 

  • Pankov, A.: Traveling Waves and Periodic Oscillations in Fermi–Pasta–Ulam lattices. Imperial College, London (2005)

    Book  Google Scholar 

  • Pankov, A., Pflüger, K.: Traveling waves in lattice dynamical systems. Math. Methods Appl. Sci. 23, 1223–1235 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  • Slepyan, L., Cherkaev, A., Cherkaev, E.: Transition waves in bistable structures. II. Analytical solution: wave speed and energy dissipation. J. Mech. Phys. Solids 53, 407–436 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Smets, D., Willem, M.: Solitary waves with prescribed speed on infinite lattices. J. Funct. Anal. 149, 266–275 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  • Schwetlick, H., Zimmer, J.: Solitary waves for nonconvex FPU lattices. J. Nonlinear Sci. 17(1), 1–12 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Schwetlick, H., Zimmer, J.: Existence of dynamic phase transitions in a one-dimensional lattice model with piecewise quadratic interaction potential. SIAM J. Math. Anal. 41(3), 1231–1271 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • Truskinovsky, L.: Equilibrium phase interfaces. Sov. Phys. Dokl. 27(7), 551–553 (1982)

    Google Scholar 

  • Truskinovsky, L.: Kinks versus shocks. In: Dunn, J.E., Fosdick, R., Slemrod, M. (eds.) Shock Induced Transitions and Phase Structures in General Media. IMA Volumes in Mathematics and its Applications, vol. 52, pp. 185–229. Springer, New York (1983)

    Google Scholar 

  • Truskinovsky, L., Vainchtein, A.: Kinetics of martensitic phase transitions: lattice model. SIAM J. Appl. Math. 66, 533–553 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Truskinovsky, L., Vainchtein, A.: Explicit kinetic relation from ‘first principles’. In: Steinmann, P., Maugin, G.A. (eds.) Mechanics of Material Forces. Advances in Mechanics and Mathematics, vol. 11, pp. 43–50. Springer, New York (2006)

    Chapter  Google Scholar 

  • Trofimov, E., Vainchtein, A.: Shocks and kinks in a discrete model of displacive phase transitions. Contin. Mech. Thermodyn. (2010). doi:10.1007/s00161-010-0148-7

    MathSciNet  Google Scholar 

  • Vainchtein, A.: The role of spinodal region in the kinetics of lattice phase transitions. J. Mech. Phys. Solids 58(2), 227–240 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Herrmann.

Additional information

Communicated by G. Iooss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrmann, M. Action Minimising Fronts in General FPU-type Chains. J Nonlinear Sci 21, 33–55 (2011). https://doi.org/10.1007/s00332-010-9075-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-010-9075-9

Keywords

Mathematics Subject Classification (2000)

Navigation