Abstract
We study atomic chains with nonlinear nearest neighbour interactions and prove the existence of fronts (heteroclinic travelling waves with constant asymptotic states). Generalising recent results of Herrmann and Rademacher we allow for non-convex interaction potentials and find fronts with non-monotone profile. These fronts minimise an action integral and can only exists if the asymptotic states fulfil the macroscopic constraints and if the interaction potential satisfies a geometric graph condition. Finally, we illustrate our findings by numerical simulations.
Similar content being viewed by others
References
Aubry, S., Proville, L.: Pressure fronts in 1D nonlinear lattices. In: Proceedings of EQUADIFF-07 (2007, to appear). See arXiv:0910.4890
Balk, A.M., Cherkaev, A., Slepyan, L.: Dynamics of chains with non-monotone stress-strain relations. I. Model and numerical experiments. J. Mech. Phys. Solids 49, 131–148 (2001a)
Balk, A.M., Cherkaev, A., Slepyan, L.: Dynamics of chains with non-monotone stress-strain relations. II. Nonlinear waves and waves of phase transition. J. Mech. Phys. Solids 49, 149–171 (2001b)
Dreyer, W., Herrmann, M., Mielke, A.: Micro-macro transition for the atomic chain via Whitham’s modulation equation. Nonlinearity 19(2), 471–500 (2006)
Friesecke, G., Matthies, K.: Atomic-scale localization of high-energy solitary waves on lattices. Physica D 171, 211–220 (2002)
Fermi, E., Pasta, J., Ulam, S.: Studies on nonlinear problems. Los Alamos Scientific Laboraty Report LA-1940 (1955). Reprinted in: Mattis, D.C. (ed.) The Many Body Problem. World Scientific, Singapore (1993)
Filip, A.-M., Venakides, S.: Existence and modulation of traveling waves in particle chains. Commun. Pure Appl. Math. 51(6), 693–735 (1999)
Friesecke, G., Wattis, J.A.D.: Existence theorem for solitary waves on lattices. Commun. Math. Phys. 161(2), 391–418 (1994)
Herrmann, M.: Unimodal wave trains and solitons in convex FPU chains. Preprint, see arXiv:0901.3736 (2009)
Herrmann, M., Rademacher, J.D.M.: Heteroclinic travelling waves in convex FPU-type chains. SIAM J. Math. Anal. 42(4), 1483–1504 (2010a)
Herrmann, M., Rademacher, J.D.M.: Riemann solvers and undercompressive shocks of convex FPU chains. Nonlinearity 23(2), 277–304 (2010b)
Iooss, G., James, G.: Localized waves in nonlinear oscillator chains. Chaos 15, 015113 (2005)
Iooss, G.: Travelling waves in the Fermi–Pasta–Ulam lattice. Nonlinearity 13, 849–866 (2000)
Kreiner, C.F., Zimmer, J.: Heteroclinic travelling waves for the lattice sine-Gordon equation with linear pair interaction. Discrete Contin. Dyn. Syst. Ser. A 25(3), 915–931 (2009a)
Kreiner, C.F., Zimmer, J.: Travelling wave solutions for the discrete sine-Gordon equation with nonlinear pair interaction. Nonlinear Anal., Theory Methods Appl. 70(9), 3146–3158 (2009b)
LeFloch, P.G.: Hyperbolic Systems of Conservation Laws. Lectures in Mathematics. ETH, Zürich (2002)
Pankov, A.: Traveling Waves and Periodic Oscillations in Fermi–Pasta–Ulam lattices. Imperial College, London (2005)
Pankov, A., Pflüger, K.: Traveling waves in lattice dynamical systems. Math. Methods Appl. Sci. 23, 1223–1235 (2000)
Slepyan, L., Cherkaev, A., Cherkaev, E.: Transition waves in bistable structures. II. Analytical solution: wave speed and energy dissipation. J. Mech. Phys. Solids 53, 407–436 (2005)
Smets, D., Willem, M.: Solitary waves with prescribed speed on infinite lattices. J. Funct. Anal. 149, 266–275 (1997)
Schwetlick, H., Zimmer, J.: Solitary waves for nonconvex FPU lattices. J. Nonlinear Sci. 17(1), 1–12 (2007)
Schwetlick, H., Zimmer, J.: Existence of dynamic phase transitions in a one-dimensional lattice model with piecewise quadratic interaction potential. SIAM J. Math. Anal. 41(3), 1231–1271 (2009)
Truskinovsky, L.: Equilibrium phase interfaces. Sov. Phys. Dokl. 27(7), 551–553 (1982)
Truskinovsky, L.: Kinks versus shocks. In: Dunn, J.E., Fosdick, R., Slemrod, M. (eds.) Shock Induced Transitions and Phase Structures in General Media. IMA Volumes in Mathematics and its Applications, vol. 52, pp. 185–229. Springer, New York (1983)
Truskinovsky, L., Vainchtein, A.: Kinetics of martensitic phase transitions: lattice model. SIAM J. Appl. Math. 66, 533–553 (2005)
Truskinovsky, L., Vainchtein, A.: Explicit kinetic relation from ‘first principles’. In: Steinmann, P., Maugin, G.A. (eds.) Mechanics of Material Forces. Advances in Mechanics and Mathematics, vol. 11, pp. 43–50. Springer, New York (2006)
Trofimov, E., Vainchtein, A.: Shocks and kinks in a discrete model of displacive phase transitions. Contin. Mech. Thermodyn. (2010). doi:10.1007/s00161-010-0148-7
Vainchtein, A.: The role of spinodal region in the kinetics of lattice phase transitions. J. Mech. Phys. Solids 58(2), 227–240 (2010)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by G. Iooss.
Rights and permissions
About this article
Cite this article
Herrmann, M. Action Minimising Fronts in General FPU-type Chains. J Nonlinear Sci 21, 33–55 (2011). https://doi.org/10.1007/s00332-010-9075-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00332-010-9075-9