Solitary Waves for Linearly Coupled Nonlinear Schrödinger Equations with Inhomogeneous Coefficients | Journal of Nonlinear Science Skip to main content
Log in

Solitary Waves for Linearly Coupled Nonlinear Schrödinger Equations with Inhomogeneous Coefficients

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

Motivated by the study of matter waves in Bose–Einstein condensates and coupled nonlinear optical systems, we study a system of two coupled nonlinear Schrödinger equations with inhomogeneous parameters, including a linear coupling. For that system, we prove the existence of two different kinds of homoclinic solutions to the origin describing solitary waves of physical relevance. We use a Krasnoselskii fixed point theorem together with a suitable compactness criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdullaev, F.K., Garnier, J.: Propagation of matter-wave solitons in periodic and random nonlinear potentials. Phys. Rev. A 72, 061605 (2005)

    Article  MathSciNet  Google Scholar 

  • Ambrosetti, A., Colorado, E.: Bound and ground states of coupled nonlinear Schrödinger equations. C. R. Acad. Sci. Paris, Ser. I 342, 453–458 (2006)

    MATH  MathSciNet  Google Scholar 

  • Ambrosetti, A., Colorado, E.: Standing waves of some coupled Nonlinear Schrödinger equations. J. Lond. Math. Soc. 75, 67–82 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Ambrosetti, A., Colorado, E., Ruiz, D.: Multi-bump solitons to linearly coupled systems of nonlinear Schrödinger equation. Calc. Var. Partial Differ. Equ. 30, 85–112 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Ambrosetti, A., Cerami, G., Ruiz, D.: Solitons of linearly coupled systems of semilinear non-autonomous equation on ℝN. J. Funct. Anal. (2008). doi:10.1016/j.jfa.2007.11.013

    MathSciNet  Google Scholar 

  • Belmonte-Beitia, J., Pérez-García, V.M., Vekslerchik, V., Torres, P.J.: Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities. Phys. Rev. Lett. 98, 064102 (2007)

    Article  Google Scholar 

  • Belmonte-Beitia, J., Pérez-García, V.M., Vekslerchik, V., Torres, P.J.: Lie symmetries, qualitative analysis and exact solutions of nonlinear Schrödinger equations with inhomogeneous nonlinearities. Discrete Contin. Dyn. Syst. B 9, 221 (2008)

    MATH  Google Scholar 

  • Brazhnyi, V.A., Konotop, V.V.: Stable and unstable vector dark solitons of coupled nonlinear Schrödinger equations: Application to two-component Bose–Einstein condensates. Phys. Rev. E 72, 026616 (2005)

    Article  MathSciNet  Google Scholar 

  • Brezzi, F., Markowich, P.A.: The three-dimensional Wigner–Poisson problem: existence, uniqueness and approximation. Math. Mod. Meth. Appl. Sci. 14, 35 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  • Catani, J., De Sarlo, L., Barontini, G., Minardi, F., Inguscio, M.: Degenerate Bose–Bose mixture in a three-dimensional optical lattice. Phys. Rev. A 77, 011603 (2008)

    Article  Google Scholar 

  • Chu, J., O’Regan, D., Zhang, M.: Positive solutions and eigenvalue intervals for nonlinear systems. Proc. Indian Acad. Sci. Math. Sci. 117, 85–95 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Dalfovo, F., Giorgini, S., Pitaevskii, L.P., Stringari, S.: Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463–512 (1999)

    Article  Google Scholar 

  • Davydov, A.S.: Solitons in Molecular Systems. Reidel, Dordrecht (1985)

    MATH  Google Scholar 

  • Deconinck, B., Kevrekidis, P.G., Nistazakis, H.E., Frantzeskakis, D.J.: Linearly coupled Bose–Einstein condensates: From Rabi oscillations and quasiperiodic solutions to oscillating domain walls and spiral waves. Phys. Rev. A 70, 063605 (2004)

    Article  Google Scholar 

  • Dodd, R.K., Eilbeck, J.C., Gibbon, J.D., Morris, H.C.: Solitons and Nonlinear Wave Equations. Academic Press, San Diego (1982)

    MATH  Google Scholar 

  • Dong, G., Hu, B.: Management of Bose–Einstein condensates by a spatially periodic modulation of the atomic s-wave scattering length. Phys. Rev. A. 75, 013625 (2007)

    Article  Google Scholar 

  • Erdős, L., Schlein, B., Yau, H.-T.: Derivation of the Gross–Pitaevskii equation for the dynamics of Bose–Einstein condensate. Preprint (2006). arXiv:math-ph/0606017

  • Erdős, L., Schlein, B., Yau, H.-T.: Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems. Invent. Math. 167, 515–614 (2007a)

    Article  MathSciNet  Google Scholar 

  • Erdős, L., Schlein, B., Yau, H.-T.: Rigorous derivation of the Gross–Pitaevskii equation. Phys. Rev. Lett. 98, 040404 (2007b)

    Article  Google Scholar 

  • Fedele, R., Miele, G., Palumbo, L., Vaccaro, V.G.: Thermal wave model for nonlinear longitudinal dynamics in particle accelerators. Phys. Lett. A 173, 407–413 (1993)

    Article  Google Scholar 

  • García-Ripoll, J.J., Cirac, J.I., Anglin, J., Pérez-García, V.M., Zoller, P.: Spin monopoles with Bose–Einstein condensates. Phys. Rev. A 61, 053609 (2000)

    Article  Google Scholar 

  • García-Ripoll, J.J., Pérez-García, V.M., Sols, F.: Split vortices in optically coupled Bose–Einstein condensates. Phys. Rev. A 66, 021602(R) (2002)

    Article  Google Scholar 

  • Garnier, J., Abdullaev, F.K.: Transmission of matter-wave solitons through nonlinear traps and barriers. Phys. Rev. A 74, 013604 (2006)

    Article  Google Scholar 

  • Granas, A., Dugundji, J.: Fixed Point Theory. Springer, Berlin (2003)

    MATH  Google Scholar 

  • Hasegawa, A.: Optical Solitons in Fibers. Springer, Berlin (1989)

    Google Scholar 

  • Jiang, D., Wei, J., Zhang, B.: Positive periodic solutions of functional differential equations and population models. Electr. J. Differ. Equ. 71, 1–13 (2002)

    MathSciNet  Google Scholar 

  • Kasamatsu, K., Tsubota, M.: Modulation instability and solitary-wave formation in two-component Bose–Einstein condensates. Phys. Rev. A 74, 013617 (2006)

    Article  Google Scholar 

  • Kivshar, Y., Agrawal, G.P.: Optical Solitons: From Fibers to Photonic Crystals. Academic Press, San Diego (2003)

    Google Scholar 

  • Krasnoselskii, M.A.: Positive Solutions of Operator Equations. Noordhoff, Groningen (1964)

    Google Scholar 

  • Li, H., Wang, D.N.: Control for dynamics of two coupled Bose–Einstein condensate solitons by potential deviation. Chaos Solitons Fractals 36, 1377–1384 (2008)

    Article  MATH  Google Scholar 

  • Lieb, E.H., Seiringer, R.: Proof of Bose–Einstein condensation for dilute trapped gases. Phys. Rev. Lett. 88, 170409 (2002)

    Article  Google Scholar 

  • Lieb, E.H., Seiringer, R., Yngvason, J.: Bosons in a trap: A rigorous derivation of the Gross–Pitaevskii energy functional. Phys. Rev. A 61, 043602 (2000)

    Article  Google Scholar 

  • López, J.L., Soler, J.: Asymptotic behaviour to the 3D Schrödinger/Hartree–Poisson and Wigner–Poisson systems. Math. Mod. Meth. Appl. Sci. 10, 923–943 (2000)

    MATH  Google Scholar 

  • Maddaloni, P., Modugno, M., Fort, C., Minardi, F., Inguscio, M.: Collective oscillations of two colliding Bose–Einstein condensates. Phys. Rev. Lett. 85, 2413 (2000)

    Article  Google Scholar 

  • Matthews, M.R., Anderson, B.P., Haljan, P.C., Hall, D.S., Wieman, C.E., Cornell, E.A.: Vortices in a Bose–Einstein condensate. Phys. Rev. Lett. 83, 2498–2501 (1999a)

    Article  Google Scholar 

  • Matthews, M.R., Anderson, B.P., Haljan, P.C., Hall, D.S., Holland, M.J., Williams, J.E., Wieman, C.E., Cornell, E.A.: Watching a superfluid untwist itself: Recurrence of Rabi oscillations in a Bose–Einstein condensate. Phys. Rev. Lett. 83, 3358 (1999b)

    Article  Google Scholar 

  • Merhasin, I.M., Malomed, B.A., Driben, R.: Transition to miscibility in a binary Bose–Einstein condensate induced by linear coupling. J. Phys. B: At. Mol. Opt. Phys. 38, 877–892 (2005)

    Article  Google Scholar 

  • Minardi, F., Fort, C., Maddaloni, P., Modugno, M., Inguscio, M.: Time-domain atom interferometry across the threshold for Bose–Einstein condensation. Phys. Rev. Lett. 87, 170401 (2001)

    Article  Google Scholar 

  • Modugno, G., Modugno, M., Riboli, F., Roati, G., Inguscio, M.: Two atomic species superfluid. Phys. Rev. Lett. 89, 190404 (2002)

    Article  Google Scholar 

  • Nakamura, K., Kohi, A., Yamasaki, H., Pérez-García, V.M., Konotop, V.V.: Levitation of spinor Bose–Einstein condensates: Macroscopic manifestation of the Franck–Condon effect. Europhys. Lett. 80, 50005 (2007)

    Article  Google Scholar 

  • Niarchou, P., Theocharis, G., Kevrekidis, P.G., Schmelcher, P., Frantzeskakis, D.J.: Soliton oscillations in collisionally inhomogeneous attractive Bose–Einstein condensates. Phys. Rev. A 76, 023615 (2007)

    Article  Google Scholar 

  • Pérez-García, V.M., Michinel, H., Herrero, H.: Bose–Einstein solitons in highly asymmetric traps. Phys. Rev. A 57, 3837 (1998)

    Article  Google Scholar 

  • Porter, M.A., Kevrekidis, P.G., Malomed, B.A., Frantzeskakis, D.J.: Modulated amplitude waves in collisionally inhomogenous Bose–Einstein condensates. Preprint. nlin.PS/0607009

  • Primatarowa, M.T., Stoychev, K.T., Kamburova, R.S.: Interactions of solitons with extended nonlinear defects. Phys. Rev. E 72, 036608 (2005)

    Article  Google Scholar 

  • Raghavan, S., Smerzi, A., Fantoni, S., Shenoy, S.R.: Coherent oscillations between two weakly coupled Bose–Einstein condensates: Josephson effects, π oscillations, and macroscopic quantum self-trapping. Phys. Rev. A 59, 620–633 (1999)

    Article  Google Scholar 

  • Rodas-Verde, M.I., Michinel, H., Pérez-García, V.M.: Controllable soliton emission from a Bose–Einstein condensate. Phys. Rev. Lett. 95(15), 153903 (2005)

    Article  Google Scholar 

  • Rosales, J.L., Sánchez-Gómez, J.L.: Nonlinear Schödinger equation coming from the action of the particles gravitational field on the quantum potential. Phys. Lett. A 66, 111–115 (1992)

    Article  Google Scholar 

  • Saito, H., Hulet, R.G., Ueda, M.: Stabilization of a Bose–Einstein droplet by hyperfine Rabi oscillations. Phys. Rev. A 76, 053619 (2007)

    Article  Google Scholar 

  • Sakaguchi, H., Malomed, B.: Two-dimensional solitons in the Gross–Pitaevskii equation with spatially modulated nonlinearity. Phys. Rev. E 73, 026601 (2006)

    Article  MathSciNet  Google Scholar 

  • Scott, A.: Nonlinear Science: Emergence and Dynamics of Coherent Structures. Oxford Appl. and Eng. Mathematics, vol. 1. Oxford University Press, Oxford (1999)

    MATH  Google Scholar 

  • Stuart, C.A.: Guidance properties of nonlinear planar waveguides. Arch. Ration. Mech. Anal. 125, 145–200 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  • Sulem, C., Sulem, P.: The Nonlinear Schrödinger Equation: Self-focusing and Wave Collapse. Springer, Berlin (2000)

    Google Scholar 

  • Teocharis, G., Schmelcher, P., Kevrekidis, P.G., Frantzeskakis, D.J.: Matter-wave solitons of collisionally inhomogeneous condensates. Phys. Rev. A 72, 033614 (2005)

    Article  Google Scholar 

  • Theis, M., Thalhammer, G., Winkler, K., Hellwig, M., Ruff, G., Grimm, R., Hecker Denschlag, J.: Tuning the scattering length with an optically induced feshbach resonance. Phys. Rev. Lett. 93, 123001 (2004)

    Article  Google Scholar 

  • Torres, P.J.: Guided waves in a multi-layered optical structure. Nonlinearity 19, 2103–2113 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Vázquez, L., Streit, L., Pérez-García, V.M. (Eds.): Nonlinear Klein–Gordon and Schrödinger systems: Theory and Applications. World Scientific, Singapore (1997)

    Google Scholar 

  • Vázquez-Carpentier, A., Michinel, H., Rodas-Verde, M.I., Pérez-García, V.M.: Analysis of an atom soliton laser based on the spatial control of the scattering length. Phys. Rev. A 74, 053610 (2006)

    Article  Google Scholar 

  • Williams, J., Walser, R., Cooper, J., Cornell, E.A., Holland, M.: Excitation of a dipole topological state in a strongly coupled two-component Bose–Einstein condensate. Phys. Rev. A 61, 033612 (2000)

    Article  Google Scholar 

  • Zafrany, A., Malomed, B.A., Merhasin, I.M.: Solitons in a linearly coupled system with separated dispersion and nonlinearity. Chaos 15, 037108 (2005)

    Article  MathSciNet  Google Scholar 

  • Zima, M.: On positive solutions of boundary value problems on the half-line. J. Math. Anal. Appl. 259, 127–136 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Belmonte-Beitia.

Additional information

Communicated by B. Eckhardt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belmonte-Beitia, J., Pérez-García, V.M. & Torres, P.J. Solitary Waves for Linearly Coupled Nonlinear Schrödinger Equations with Inhomogeneous Coefficients. J Nonlinear Sci 19, 437–451 (2009). https://doi.org/10.1007/s00332-008-9037-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-008-9037-7

Keywords

Mathematics Subject Classification (2000)