A Stackelberg-Nash model for new product design | OR Spectrum
Skip to main content

A Stackelberg-Nash model for new product design

  • Regular Article
  • Published:
OR Spectrum Aims and scope Submit manuscript

Abstract

Existing conjoint approaches to optimal new product design have focused on the Nash equilibrium concept to model competitive reactions. Whereas these approaches have treated all competing firms equally as Nash players, one firm may have an advantage over its rivals, e.g., more pre-experience on competitors’ behavior and/or a first-mover advantage. This paper proposes a Stackelberg-Nash (leader-followers) model which can accomodate such information for decision making. The optimal product design problem is formulated from the perspective of a profit-maximizing new entrant (the leader) who wants to launch a brand onto an existing product market and acts with foresight by anticipating price-design reactions of the incumbent firms (the Nash followers). In the absence of closed-form solutions, we use a sequential iterative procedure to compute a Stackelberg-Nash equilibrium and to establish its uniqueness. The new conjoint model is illustrated under several competitive scenarios and price, design and profit implications are compared to a simple Nash equilibrium model. We find that a Stackelberg leader strategy may not only yield a much higher profit for the new entrant than a Nash strategy, but may also lead to strong profit asymmetries between competitors with still higher profits for the incumbent firms. In other words, the incumbent firms may also benefit strongly from a new entrant choosing a Stackelberg leader strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albers S, Brockhoff K (1979) A comparison of two approaches to the optimal positioning of a new product in an attribute space. Zeitschrift Opera Res 23: 127–142

    Article  Google Scholar 

  • Albritton MD, McMullen PR (2007) Optimal product design using a colony of virtual ants. Eur J Oper Res 176: 498–520

    Article  Google Scholar 

  • Alexouda G (2004) An evolutionary algorithm approach to the share of choices problem in the product line design. Computers Oper Res 31: 2215–2229

    Article  Google Scholar 

  • Alexouda G, Paparrizos K (2001) A genetic algorithm approach to the product line design problem using the seller’s return criterion: an extensive comparative computational study. Eur J Oper Res 134: 165–178

    Article  Google Scholar 

  • Aubin JP (1979) Mathematical methods of game and economic theory. North-Holland, Amsterdam

    Google Scholar 

  • Baier D (1999) Methoden der Conjoint-Analyse in der Marktforschungs- und Marketingpraxis. In: Gaul W, Schader M (eds) Mathematische Methoden der Wirtschaftswissenschaften, Festschrift für Otto Opitz. Physica-Verlag, Heidelberg, pp 197–206

    Google Scholar 

  • Balakrishnan PV(Sundar), Jacob VS (1996) Genetic algorithms for product design. Manag Sci 42(8): 1105–1117

    Article  Google Scholar 

  • Camm JD, Cochran JJ, Curry DJ, Kannan S (2006) Conjoint optimization: an exact branch-and-bound algorithm for the share-of-choice problem. Manag Sci 52: 435–447

    Article  Google Scholar 

  • Cattin P, Wittink DR (1982) Commercial use of conjoint analysis: a survey. J Market 46: 44–53

    Article  Google Scholar 

  • Chen KD, Hausman WH (2000) Technical note: mathematical properties of the optimal product line selection problem using choice-based conjoint analysis. Manag Sci 46: 327–332

    Article  Google Scholar 

  • Choi SC, DeSarbo WS (1993) Game theoretic derivations of competitive strategies in conjoint analysis. Market Lett 4: 337–348

    Article  Google Scholar 

  • Choi SC, DeSarbo WS (1994) A conjoint-based product designing procedure incorporating price competition. J Product Innovat Manag 11: 451–459

    Article  Google Scholar 

  • Choi SC, DeSarbo WS, Harker PT (1990) Product positioning under price competition. Manag Sci 36: 175–199

    Article  Google Scholar 

  • Choi SC, DeSarbo WS, Harker PT (1992) A numerical approach to deriving long-run equilibrium solutions in spatial positioning models. Manag Sci 38: 75–86

    Article  Google Scholar 

  • de Palma A, Ginsburgh V, Papageorgiou YY, Thisse JF (1985) The principle of minimum differentiation holds under sufficient heterogeneity. Econometrica 53(4): 767–781

    Article  Google Scholar 

  • Dobson G, Kalish S (1988) Positioning and pricing a product line. Market Sci 7(2): 107–125

    Article  Google Scholar 

  • Dobson G, Kalish S (1993) Heuristics for pricing and positioning a product-line using conjoint and cost data. Manag Sci 39: 160–175

    Article  Google Scholar 

  • Friedman JW (1977) Oligopoly and the Theory of Games. North-Holland, Amsterdam

    Google Scholar 

  • Gabszewicz JJ, Thisse JF (1986) Spatial competition and the location of firms. In: Gabszewicz JJ, Thisse JF, Fujita M, Schweizer U (eds) Fundamentals of pure and applied economics: location theory, vol 5, pp 1–71

  • Gaul W, Aust E, Baier D (1995) Gewinnorientierte Produktliniengestaltung unter Berücksichtigung des Kundennutzens. Zeitschrift für Betriebswirtschaft 65(8): 835–855

    Google Scholar 

  • Green PE, Carroll JD, Goldberg SM (1981) A general approach to product design optimization via conjoint analysis. J Market 45(3): 17–37

    Article  Google Scholar 

  • Green PE, Krieger AM (1985) Models and heuristics for product line selection. Market Sci 4(1): 1–19

    Article  Google Scholar 

  • Green PE, Krieger AM (1987) A simple heuristic for selecting ‘good’ products in conjoint analysis. Appl Manag Sci 5: 131–153

    Google Scholar 

  • Green PE, Krieger AM (1992) An application of a product positioning model to pharmaceutical products. Market Sci 11(2): 117–132

    Article  Google Scholar 

  • Green PE, Krieger AM (1993) Conjoint analysis with product positioning applications. In: Eliashberg J, Lilien GJ (eds) Handbooks in operations research and management science 5, Marketing. Elsevier, Amsterdam, pp 467–516

    Google Scholar 

  • Green PE, Krieger AM (1997) Using conjoint analysis to view competitive interaction through the customer’s eyes. In: Day GS, Reibstein DJ (eds) Wharton on dynamic competitive strategy. Wiley & Sons, New York, pp 343–368

    Google Scholar 

  • Green PE, Krieger AM, Wind Y (2004) Buyer choice simulators, optimizers, and dynamic models. In: Wind Y, Green PE (eds) Market research and modeling: progress and prospects. A tribute to Paul E. Green, Springer, New York, pp 169–200

  • Green PE, Rao VR (1971) Conjoint measurement for quantifying judgmental data. J Market Res 8: 355–363

    Article  Google Scholar 

  • Green PE, Srinivasan V (1978) Conjoint analysis in consumer research: issues and outlook. J Consumer Res 5: 103–123

    Article  Google Scholar 

  • Green PE, Srinivasan V (1990) Conjoint analysis in marketing: new developments with implications for research and practice. Journal of Marketing 54: 3–19

    Article  Google Scholar 

  • Gutsche J (1995) Produktpräferenzanalyse: Ein modelltheoretisches und methodisches Konzept zur Marktsimulation mittels Präferenzerfassungsmodellen. Duncker & Humblot, Berlin

    Google Scholar 

  • Hruschka H, Fettes W, Probst M (2004) An empirical comparison of the validity of a neural net based multinomial logit choice model to alternative model specifications. Eur J Oper Res 159: 166–180

    Article  Google Scholar 

  • Johnson RM (1974) Trade-off analysis of consumer values. J Market Res 11: 121–127

    Article  Google Scholar 

  • Kaul A, Rao VR (1995) Research for product positioning and design decisions: an integrative review. Int J Res Market 12: 293–320

    Article  Google Scholar 

  • Kohli R, Krishnamurti R (1987) A heuristic approach to product design. Manag Sci 33: 1523–1533

    Article  Google Scholar 

  • Kohli R, Sukumar R (1990) Heuristics for product-line design using conjoint analysis. Manag Sci 36(12): 1464–1478

    Article  Google Scholar 

  • Marks UG (1994) Neuproduktpositionierung in Wettbewerbsmärkten. DUV, Wiesbaden

    Google Scholar 

  • Marks UG, Albers S (2001) Experiments in competitive product positioning: actual behavior compared to Nash solutions. Schmalenbach Business Rev 53: 150–174

    Google Scholar 

  • Nair SK, Thakur LS, Wen KW (1995) Near optimal solutions for product line design and selection: beam search heuristics. Manag Sci 41(5): 767–785

    Article  Google Scholar 

  • Sherali HD, Soyster AL, Murphy FH (1983) Stackelberg-Nash-Cournot equilibria: characterizations and computations. Oper Res 31: 253–276

    Article  Google Scholar 

  • von Stackelberg H (1934) Marktform und Gleichgewicht. Springer, Wien

    Google Scholar 

  • Steiner WJ (1999) Optimale Neuproduktplanung: Entscheidungsmodelle und wettbewerbsorientierte Ansätze. DUV, Wiesbaden

    Google Scholar 

  • Steiner WJ, Hruschka H (2000) Conjointanalyse-basierte Produkt(linien)gestaltung unter Berücksichtigung von Konkurrenzreaktionen. OR Spektrum 22: 71–95

    Google Scholar 

  • Steiner WJ, Hruschka H (2002) Produktliniengestaltung mit Genetischen Algorithmen. Zeitschrift für betriebswirtschaftliche Forschung (zfbf) 54: 575–601

    Google Scholar 

  • Steiner WJ, Hruschka H (2003) Genetic algorithms for product design: how well do they really work. Int J Market Res, J Market Res Soc 45(2): 229–240

    Google Scholar 

  • Wittink DR, Cattin P (1989) Commercial use of conjoint analysis: an update. J Market 53: 91–96

    Article  Google Scholar 

  • Wittink DR, Vriens M, Burhenne W (1994) Commercial use of conjoint analysis in Europe: results and critical reflections. Int J Res Market 11: 41–52

    Article  Google Scholar 

  • Zufryden FS (1977) A conjoint-measurement-based approach for optimal new product design and market segmentation. In: Shocker AD (ed) Analytic approaches to product and market planning, MA: marketing science institute, Cambridge, pp 100–114

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Winfried J. Steiner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steiner, W.J. A Stackelberg-Nash model for new product design. OR Spectrum 32, 21–48 (2010). https://doi.org/10.1007/s00291-008-0137-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00291-008-0137-4

Keywords