Dot to dot, simple or sophisticated: a survey on shape reconstruction algorithms | Acta Informatica Skip to main content

Advertisement

Log in

Dot to dot, simple or sophisticated: a survey on shape reconstruction algorithms

  • Review
  • Published:
Acta Informatica Aims and scope Submit manuscript

Abstract

Dot pattern points are the samples taken from all regions of a 2D object, either inside or the boundary. Given a set of dot pattern points in the plane, the shape reconstruction problem seeks to find the boundaries of the points. These boundaries are not mathematically well-defined. Hence, a superior algorithm is the one which produces the result closest to the human visual perception. There are different challenges in designing these algorithms, such as the independence from human supervision, and the ability to detect multiple components, holes and sharp corners. In this paper, we present a thorough review on the rich body of research in shape reconstruction, classify the ideas behind the algorithms, and highlight their pros and cons. Moreover, to overcome the barriers of implementing these algorithms, we provide an integrated application to visualize the outputs of the prominent algorithms for further comparison.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Data availability

The application of shape reconstruction which has been implemented by the authors is available at https://github.com/KNTU-CG/dot-to-dot.

References

  1. Abidha, V., Ashok, P.: Geometric separability using orthogonal objects. Inf. Process. Lett. 176, 106245 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  2. Acharyya, A., De, M., Nandy, S.C., Pandit, S.: Variations of largest rectangle recognition amidst a bichromatic point set. Discrete Appl. Math. 286, 35–50 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  3. Agarwal, P.K., de Berg, M., Matousek, J., Schwarzkopf, O.: Constructing levels in arrangements and higher order Voronoi diagrams. SIAM J. Comput. 27(3), 654–667 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ahlvers, U., Rajagopalan, R., Zlzer, U.: Model-free face detection and head tracking with morphological hole mapping. In: 2005 13th European Signal Processing Conference, pp. 1–4 (2005)

  5. Arampatzis, A., Kreveld, M.V., Reinbacher, I., Jones, C.B., Vaid, S., Clough, P., Joho, H., Sanderson, M.: Web-based delineation of imprecise regions. Comput. Environ. Urban Syst. 30(4), 436–459 (2006)

    Article  Google Scholar 

  6. Asaeedi, S., Didehvar, F., Mohades, A.: \(\alpha \)-concave hull, a generalization of convex hull. Theor. Comput. Sci. 702, 48–59 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Aurenhammer, F.: Improved algorithms for discs and balls using power diagrams. J. Algorithms 9(2), 151–161 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bae, S.W., Lee, C., Ahn, H.-K., Choi, S., Chwa, K.-Y.: Maintaining extremal points and its applications to deciding optimal orientations. In: Tokuyama, T. (ed.) Algorithms and Computation, pp. 788–799. Springer, Berlin (2007)

    Chapter  MATH  Google Scholar 

  9. Bae, S.W., Lee, C., Ahn, H.-K., Choi, S., Chwa, K.-Y.: Computing minimum-area rectilinear convex hull and L-shape. Comput. Geom. 42(9), 903–912 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Batsanov, S.S.: Van der Waals radii of elements. Inorg. Mater. 37, 871–885 (2001)

    Article  Google Scholar 

  11. Boyce, J.E., Dobkin, D.P., Drysdale, R.L.S., III., Guibas, L.J.: Finding extremal polygons. SIAM J. Comput. 14(1), 134–147 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chaudhuri, A.R., Chaudhuri, B.B., Parui, S.K.: A novel approach to computation of the shape of a dot pattern and extraction of its perceptual border. Comput. Vis. Image Underst. 68, 257–275 (1997)

    Article  Google Scholar 

  13. Da, T.K.F.: 2D Alpha-shape implementation. https://doc.cgal.org/latest/Alpha_shapes_2/index.html

  14. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications, 2nd edn. Springer, Cham (2000)

    Book  MATH  Google Scholar 

  15. de Figueiredo, L.H., Paiva, A.: Region reconstruction with the sphere-of-influence diagram. Comput. Graph. 107, 252–263 (2022)

    Article  Google Scholar 

  16. Dey, T.K., Wang, Y.: Computational Topology for Data Analysis. Cambridge University Press, Cambridge (2022)

    Book  MATH  Google Scholar 

  17. Duckham, M., Kulik, L., Worboys, M., Galton, A.: Efficient generation of simple polygons for characterizing the shape of a set of points in the plane. Pattern Recogn. 41(10), 3224–3236 (2008)

    Article  MATH  Google Scholar 

  18. Edelsbrunner, H.: Weighted alpha shapes. Technical report, USA (1992)

  19. Edelsbrunner, H.: Shape reconstruction with Delaunay complex. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN’98: Theoretical Informatics, pp. 119–132. Springer, Berlin (1998)

    Chapter  Google Scholar 

  20. Edelsbrunner, H., Kirkpatrick, D., Seidel, R.: On the shape of a set of points in the plane. IEEE Trans. Inf. Theory 51, 551–559 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ertöz, L., Steinbach, M., Kumar, V.: Finding clusters of different sizes, shapes, and densities in noisy, high dimensional data. In: Proceedings of the 2003 SIAM International Conference on Data Mining (SDM), pp. 47–58 (2003)

  22. Fekete, S.P., Pulleyblank, W.R.: Area optimization of simple polygons. In: SCG ’93 (1993)

  23. Galton, A., Duckham, M.: What is the region occupied by a set of points? In: Raubal, M., Miller, H.J., Frank, A.U., Goodchild, M.F. (eds.) Geographic Information Science, pp. 81–98. Springer, Berlin (2006)

    Chapter  Google Scholar 

  24. Ghadai, S., Balu, A., Sarkar, S., Krishnamurthy, A.: Learning localized features in 3D CAD models for manufacturability analysis of drilled holes. Comput. Aided Geom. Des. 62, 263–275 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gheibi, A., Davoodi, M., Javad, A., Panahi, S., Aghdam, M., Asgaripour, M., Mohades, A.: Polygonal shape reconstruction in the plane. IET Comput. Vis. 5, 97–106 (2011)

    Article  Google Scholar 

  26. Ghosh, P., Gao, J., Gasparri, A., Krishnamachari, B.: Distributed hole detection algorithms for wireless sensor networks. In: 2014 IEEE 11th International Conference on Mobile Ad Hoc and Sensor Systems, pp. 257–261 (2014)

  27. Guler, T., Gross, G.: Detection of island formation and identification of causal factors under multiple line outages. IEEE Trans. Power Syst. 22(2), 505–513 (2007)

    Article  Google Scholar 

  28. Jarvis, R.: On the identification of the convex hull of a finite set of points in the plane. Inf. Process. Lett. 2(1), 18–21 (1973)

    Article  MATH  Google Scholar 

  29. Jayanti, S., Kalyanaraman, Y., Iyer, N., Ramani, K.: Developing an engineering shape benchmark for CAD models. Comput. Aided Des. 38(9), 939–953 (2006)

    Article  Google Scholar 

  30. Krasnoshchekov, D., Polishchuk, V.: Order-\(k\)\(\alpha \)-hulls and \(\alpha \)-shapes. Inf. Process. Lett. 114(1), 76–83 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lee, D.-T.: On \(k\)-nearest neighbor Voronoi diagrams in the plane. IEEE Trans. Comput. C–31(6), 478–487 (1982)

    MathSciNet  MATH  Google Scholar 

  32. Liu, Y., Nediak, M.: Planar case of the maximum box and related problems. In: Canadian Conference on Computational Geometry (CCCG), pp. 14–18 (2003)

  33. Marlier, D.: Chi-shape implementation. https://github.com/damienmarlier51/PolygonX

  34. Melkemi, M., Djebali, M.: Computing the shape of a planar points set. Pattern Recogn. 33(9), 1423–1436 (2000)

    Article  Google Scholar 

  35. Melkemi, M., Djebali, M.: Weighted A-shape: a descriptor of the shape of a point set. Pattern Recogn. 34(6), 1159–1170 (2001)

    Article  MATH  Google Scholar 

  36. Methirumangalath, S., Kannan, S.S., Parakkat, A.D., Muthuganapathy, R.: EC-shape implementation. https://github.com/ShyamsTree/HoleDetection

  37. Methirumangalath, S., Kannan, S.S., Parakkat, A.D., Muthuganapathy, R.: Hole detection in a planar point set: an empty disk approach. Comput. Graph. 66, 124–134 (2017)

    Article  Google Scholar 

  38. Methirumangalath, S., Parakkat, A.D., Muthuganapathy, R.: A unified approach towards reconstruction of a planar point set. Comput. Graph. 51, 90–97 (2015)

    Article  Google Scholar 

  39. Moreira, A., Santos, M.Y.: Concave hull: a \(k\)-nearest neighbours approach for the computation of the region occupied by a set of points. In: Proceedings of the Second International Conference on Computer Graphics Theory and Applications (2007)

  40. Ohrhallinger, S., Peethambaran, J., Parakkat, A.D., Dey, T.K., Muthuganapathy, R.: 2D points curve reconstruction survey and benchmark. Comput. Graph. Forum 40(2), 611–632 (2021)

    Article  Google Scholar 

  41. Oliveira, E., Furtado, V., Andrade, J., Makse, H.: A worldwide model for boundaries of urban settlements. R. Soc. Open Sci. 5, 180468 (2018)

    Article  Google Scholar 

  42. Parakkat, A.D., Memari, P., Cani, M.-P.: Layered reconstruction of stippling art. In: SIGGRAPH 2019 (Poster Proceedings), Los Angeles, United States (2019). hal-02193269f

  43. Peethambaran, J., Muthuganapathy, R.: A non-parametric approach to shape reconstruction from planar point sets through Delaunay filtering. Comput. Aided Des. 62, 164–175 (2015)

    Article  Google Scholar 

  44. Peethambaran, J., Ohrhallinger, S., Parakkat, A.D.: Shape characterization of point sets in 2D. EUROGRAPHICS 2022/ S. Hahmann and G. Patow-Tutorial (2022)

  45. Richards, F.M.: Areas, volumes, packing, and protein structure. Annu. Rev. Biophys. Bioeng. 6(1), 151–176 (1977)

    Article  Google Scholar 

  46. Seara, C.: On geometric separability. Ph.D. thesis, Universidad Politécnica De Catalunya (2002)

  47. Serra, J.: Image Analysis and Mathematical Morphology. Academic Press Inc., USA (1983)

    Google Scholar 

  48. Sheikhi, F., Mohades, A.: Planar maximum-box problem revisited. Theor. Comput. Sci. 729, 57–67 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  49. Sheikhi, F., Mohades, A.: Maximum separability by L-shapes. In: 2020 25th International Computer Conference, Computer Society of Iran (CSICC), pp. 1–7 (2020)

  50. Sheikhi, F., Mohades, A., de Berg, M., Davoodi, M.: Separating bichromatic point sets by L-shapes. Comput. Geom. 48(9), 673–687 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  51. Sheikhi, F., Mohades, A., de Berg, M., Mehrabi, A.D.: Separability of imprecise points. Comput. Geom. 61, 24–37 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  52. Thayyil, S.B., Parakkat, A.D., Muthuganapathy, R.: CT-shape implementation. https://github.com/agcl-mr/Reconstruction-CTShape

  53. Thayyil, S.B., Parakkat, A.D., Muthuganapathy, R.: An input-independent single pass algorithm for reconstruction from dot patterns and boundary samples. Comput. Aided Geom. Des. 80, 101879 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  54. Toussaint, G.: Solving geometric problems with the rotating calipers. In: Proceedings of IEEE MELECON ’83, pp. A10.02/1–4 (1983)

  55. Toussaint, G.T.: A graph-theoretical primal sketch. In: Toussaint, G.T. (ed.) Computational Morphology, Volume 6 of Machine Intelligence and Pattern Recognition, pp. 229–260. North-Holland, Amsterdam (1988)

    Google Scholar 

  56. Toussaint, G.T.: The sphere of influence graph: theory and applications. Int. J. Inf. Technol. Comput. Sci. 14, 37–42 (2014)

    Google Scholar 

  57. van Kreveld, M., van Lankveld, T., de Rie, M.: (\(\alpha ,\delta \))-sleeves for reconstruction of rectilinear building facets. In: Proceedings of the 7th International 3D GeoInfo Conference, Lecture Notes in Geoinformation and Cartography, pp. 231–248. Springer, Berlin (2013)

  58. van Kreveld, M., van Lankveld, T., Veltkamp, R.: Identifying well-covered minimal bounding rectangles in 2D point data. In: 25th European Workshop on Computational Geometry, pp. 277–280 (2009)

  59. van Lankveld, T., van Kreveld, M., Veltkamp, R.: Identifying rectangles in laser range data for urban scene reconstruction. Comput. Graph. 35(3), 719–725 (2011)

    Article  Google Scholar 

  60. Veltkamp, R.C.: Shape matching: similarity measures and algorithms. In: Proceedings International Conference on Shape Modeling and Applications, pp. 188–197 (2001)

Download references

Acknowledgements

The authors would like to express their gratitude to the anonymous reviewers for providing insightful comments which have contributed to improving the quality of presenting the paper.

Funding

The authors declare that they have received no funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farnaz Sheikhi.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheikhi, F., Zeraatkar, B. & Hanaie, S. Dot to dot, simple or sophisticated: a survey on shape reconstruction algorithms. Acta Informatica 60, 335–359 (2023). https://doi.org/10.1007/s00236-023-00443-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00236-023-00443-7

Navigation