Abstract
Dot pattern points are the samples taken from all regions of a 2D object, either inside or the boundary. Given a set of dot pattern points in the plane, the shape reconstruction problem seeks to find the boundaries of the points. These boundaries are not mathematically well-defined. Hence, a superior algorithm is the one which produces the result closest to the human visual perception. There are different challenges in designing these algorithms, such as the independence from human supervision, and the ability to detect multiple components, holes and sharp corners. In this paper, we present a thorough review on the rich body of research in shape reconstruction, classify the ideas behind the algorithms, and highlight their pros and cons. Moreover, to overcome the barriers of implementing these algorithms, we provide an integrated application to visualize the outputs of the prominent algorithms for further comparison.
Similar content being viewed by others
Data availability
The application of shape reconstruction which has been implemented by the authors is available at https://github.com/KNTU-CG/dot-to-dot.
References
Abidha, V., Ashok, P.: Geometric separability using orthogonal objects. Inf. Process. Lett. 176, 106245 (2022)
Acharyya, A., De, M., Nandy, S.C., Pandit, S.: Variations of largest rectangle recognition amidst a bichromatic point set. Discrete Appl. Math. 286, 35–50 (2020)
Agarwal, P.K., de Berg, M., Matousek, J., Schwarzkopf, O.: Constructing levels in arrangements and higher order Voronoi diagrams. SIAM J. Comput. 27(3), 654–667 (1998)
Ahlvers, U., Rajagopalan, R., Zlzer, U.: Model-free face detection and head tracking with morphological hole mapping. In: 2005 13th European Signal Processing Conference, pp. 1–4 (2005)
Arampatzis, A., Kreveld, M.V., Reinbacher, I., Jones, C.B., Vaid, S., Clough, P., Joho, H., Sanderson, M.: Web-based delineation of imprecise regions. Comput. Environ. Urban Syst. 30(4), 436–459 (2006)
Asaeedi, S., Didehvar, F., Mohades, A.: \(\alpha \)-concave hull, a generalization of convex hull. Theor. Comput. Sci. 702, 48–59 (2017)
Aurenhammer, F.: Improved algorithms for discs and balls using power diagrams. J. Algorithms 9(2), 151–161 (1988)
Bae, S.W., Lee, C., Ahn, H.-K., Choi, S., Chwa, K.-Y.: Maintaining extremal points and its applications to deciding optimal orientations. In: Tokuyama, T. (ed.) Algorithms and Computation, pp. 788–799. Springer, Berlin (2007)
Bae, S.W., Lee, C., Ahn, H.-K., Choi, S., Chwa, K.-Y.: Computing minimum-area rectilinear convex hull and L-shape. Comput. Geom. 42(9), 903–912 (2009)
Batsanov, S.S.: Van der Waals radii of elements. Inorg. Mater. 37, 871–885 (2001)
Boyce, J.E., Dobkin, D.P., Drysdale, R.L.S., III., Guibas, L.J.: Finding extremal polygons. SIAM J. Comput. 14(1), 134–147 (1985)
Chaudhuri, A.R., Chaudhuri, B.B., Parui, S.K.: A novel approach to computation of the shape of a dot pattern and extraction of its perceptual border. Comput. Vis. Image Underst. 68, 257–275 (1997)
Da, T.K.F.: 2D Alpha-shape implementation. https://doc.cgal.org/latest/Alpha_shapes_2/index.html
de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications, 2nd edn. Springer, Cham (2000)
de Figueiredo, L.H., Paiva, A.: Region reconstruction with the sphere-of-influence diagram. Comput. Graph. 107, 252–263 (2022)
Dey, T.K., Wang, Y.: Computational Topology for Data Analysis. Cambridge University Press, Cambridge (2022)
Duckham, M., Kulik, L., Worboys, M., Galton, A.: Efficient generation of simple polygons for characterizing the shape of a set of points in the plane. Pattern Recogn. 41(10), 3224–3236 (2008)
Edelsbrunner, H.: Weighted alpha shapes. Technical report, USA (1992)
Edelsbrunner, H.: Shape reconstruction with Delaunay complex. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN’98: Theoretical Informatics, pp. 119–132. Springer, Berlin (1998)
Edelsbrunner, H., Kirkpatrick, D., Seidel, R.: On the shape of a set of points in the plane. IEEE Trans. Inf. Theory 51, 551–559 (1983)
Ertöz, L., Steinbach, M., Kumar, V.: Finding clusters of different sizes, shapes, and densities in noisy, high dimensional data. In: Proceedings of the 2003 SIAM International Conference on Data Mining (SDM), pp. 47–58 (2003)
Fekete, S.P., Pulleyblank, W.R.: Area optimization of simple polygons. In: SCG ’93 (1993)
Galton, A., Duckham, M.: What is the region occupied by a set of points? In: Raubal, M., Miller, H.J., Frank, A.U., Goodchild, M.F. (eds.) Geographic Information Science, pp. 81–98. Springer, Berlin (2006)
Ghadai, S., Balu, A., Sarkar, S., Krishnamurthy, A.: Learning localized features in 3D CAD models for manufacturability analysis of drilled holes. Comput. Aided Geom. Des. 62, 263–275 (2018)
Gheibi, A., Davoodi, M., Javad, A., Panahi, S., Aghdam, M., Asgaripour, M., Mohades, A.: Polygonal shape reconstruction in the plane. IET Comput. Vis. 5, 97–106 (2011)
Ghosh, P., Gao, J., Gasparri, A., Krishnamachari, B.: Distributed hole detection algorithms for wireless sensor networks. In: 2014 IEEE 11th International Conference on Mobile Ad Hoc and Sensor Systems, pp. 257–261 (2014)
Guler, T., Gross, G.: Detection of island formation and identification of causal factors under multiple line outages. IEEE Trans. Power Syst. 22(2), 505–513 (2007)
Jarvis, R.: On the identification of the convex hull of a finite set of points in the plane. Inf. Process. Lett. 2(1), 18–21 (1973)
Jayanti, S., Kalyanaraman, Y., Iyer, N., Ramani, K.: Developing an engineering shape benchmark for CAD models. Comput. Aided Des. 38(9), 939–953 (2006)
Krasnoshchekov, D., Polishchuk, V.: Order-\(k\)\(\alpha \)-hulls and \(\alpha \)-shapes. Inf. Process. Lett. 114(1), 76–83 (2014)
Lee, D.-T.: On \(k\)-nearest neighbor Voronoi diagrams in the plane. IEEE Trans. Comput. C–31(6), 478–487 (1982)
Liu, Y., Nediak, M.: Planar case of the maximum box and related problems. In: Canadian Conference on Computational Geometry (CCCG), pp. 14–18 (2003)
Marlier, D.: Chi-shape implementation. https://github.com/damienmarlier51/PolygonX
Melkemi, M., Djebali, M.: Computing the shape of a planar points set. Pattern Recogn. 33(9), 1423–1436 (2000)
Melkemi, M., Djebali, M.: Weighted A-shape: a descriptor of the shape of a point set. Pattern Recogn. 34(6), 1159–1170 (2001)
Methirumangalath, S., Kannan, S.S., Parakkat, A.D., Muthuganapathy, R.: EC-shape implementation. https://github.com/ShyamsTree/HoleDetection
Methirumangalath, S., Kannan, S.S., Parakkat, A.D., Muthuganapathy, R.: Hole detection in a planar point set: an empty disk approach. Comput. Graph. 66, 124–134 (2017)
Methirumangalath, S., Parakkat, A.D., Muthuganapathy, R.: A unified approach towards reconstruction of a planar point set. Comput. Graph. 51, 90–97 (2015)
Moreira, A., Santos, M.Y.: Concave hull: a \(k\)-nearest neighbours approach for the computation of the region occupied by a set of points. In: Proceedings of the Second International Conference on Computer Graphics Theory and Applications (2007)
Ohrhallinger, S., Peethambaran, J., Parakkat, A.D., Dey, T.K., Muthuganapathy, R.: 2D points curve reconstruction survey and benchmark. Comput. Graph. Forum 40(2), 611–632 (2021)
Oliveira, E., Furtado, V., Andrade, J., Makse, H.: A worldwide model for boundaries of urban settlements. R. Soc. Open Sci. 5, 180468 (2018)
Parakkat, A.D., Memari, P., Cani, M.-P.: Layered reconstruction of stippling art. In: SIGGRAPH 2019 (Poster Proceedings), Los Angeles, United States (2019). hal-02193269f
Peethambaran, J., Muthuganapathy, R.: A non-parametric approach to shape reconstruction from planar point sets through Delaunay filtering. Comput. Aided Des. 62, 164–175 (2015)
Peethambaran, J., Ohrhallinger, S., Parakkat, A.D.: Shape characterization of point sets in 2D. EUROGRAPHICS 2022/ S. Hahmann and G. Patow-Tutorial (2022)
Richards, F.M.: Areas, volumes, packing, and protein structure. Annu. Rev. Biophys. Bioeng. 6(1), 151–176 (1977)
Seara, C.: On geometric separability. Ph.D. thesis, Universidad Politécnica De Catalunya (2002)
Serra, J.: Image Analysis and Mathematical Morphology. Academic Press Inc., USA (1983)
Sheikhi, F., Mohades, A.: Planar maximum-box problem revisited. Theor. Comput. Sci. 729, 57–67 (2018)
Sheikhi, F., Mohades, A.: Maximum separability by L-shapes. In: 2020 25th International Computer Conference, Computer Society of Iran (CSICC), pp. 1–7 (2020)
Sheikhi, F., Mohades, A., de Berg, M., Davoodi, M.: Separating bichromatic point sets by L-shapes. Comput. Geom. 48(9), 673–687 (2015)
Sheikhi, F., Mohades, A., de Berg, M., Mehrabi, A.D.: Separability of imprecise points. Comput. Geom. 61, 24–37 (2017)
Thayyil, S.B., Parakkat, A.D., Muthuganapathy, R.: CT-shape implementation. https://github.com/agcl-mr/Reconstruction-CTShape
Thayyil, S.B., Parakkat, A.D., Muthuganapathy, R.: An input-independent single pass algorithm for reconstruction from dot patterns and boundary samples. Comput. Aided Geom. Des. 80, 101879 (2020)
Toussaint, G.: Solving geometric problems with the rotating calipers. In: Proceedings of IEEE MELECON ’83, pp. A10.02/1–4 (1983)
Toussaint, G.T.: A graph-theoretical primal sketch. In: Toussaint, G.T. (ed.) Computational Morphology, Volume 6 of Machine Intelligence and Pattern Recognition, pp. 229–260. North-Holland, Amsterdam (1988)
Toussaint, G.T.: The sphere of influence graph: theory and applications. Int. J. Inf. Technol. Comput. Sci. 14, 37–42 (2014)
van Kreveld, M., van Lankveld, T., de Rie, M.: (\(\alpha ,\delta \))-sleeves for reconstruction of rectilinear building facets. In: Proceedings of the 7th International 3D GeoInfo Conference, Lecture Notes in Geoinformation and Cartography, pp. 231–248. Springer, Berlin (2013)
van Kreveld, M., van Lankveld, T., Veltkamp, R.: Identifying well-covered minimal bounding rectangles in 2D point data. In: 25th European Workshop on Computational Geometry, pp. 277–280 (2009)
van Lankveld, T., van Kreveld, M., Veltkamp, R.: Identifying rectangles in laser range data for urban scene reconstruction. Comput. Graph. 35(3), 719–725 (2011)
Veltkamp, R.C.: Shape matching: similarity measures and algorithms. In: Proceedings International Conference on Shape Modeling and Applications, pp. 188–197 (2001)
Acknowledgements
The authors would like to express their gratitude to the anonymous reviewers for providing insightful comments which have contributed to improving the quality of presenting the paper.
Funding
The authors declare that they have received no funding.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interests
The authors declare that they have no conflict of interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Sheikhi, F., Zeraatkar, B. & Hanaie, S. Dot to dot, simple or sophisticated: a survey on shape reconstruction algorithms. Acta Informatica 60, 335–359 (2023). https://doi.org/10.1007/s00236-023-00443-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00236-023-00443-7