The regular languages of wire linear AC $$^0$$ | Acta Informatica Skip to main content
Log in

The regular languages of wire linear AC\(^0\)

  • Original Article
  • Published:
Acta Informatica Aims and scope Submit manuscript

Abstract

In this paper, the regular languages of wire linear \(\hbox {AC}^0\)are characterized as the languages expressible in the two-variable fragment of first-order logic with regular predicates, \(\mathrm{FO}^2[\mathrm{reg}]\). Additionally, they are characterized as the languages recognized by the algebraic class \(\mathbf {QLDA}\). The class is shown to be decidable and examples of languages in and outside of it are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. For the reader familiar with algebraic language theory: note that to simplify presentation, we do not define varieties of monoids and see them as varieties of stamps.

References

  1. Almeida, J.: A syntactical proof of locality of DA. Int. J. Algebra Comput. 06(02), 165–177 (1996). https://doi.org/10.1142/S021819679600009X

    Article  MathSciNet  MATH  Google Scholar 

  2. Barrington, D.A.M., Compton, K., Straubing, H., Thérien, D.: Regular languages in \({\rm NC}^1\). J. Comput. Syst. Sci. 44, 478–499 (1992)

    Article  Google Scholar 

  3. Barrington, D.A.M., Immerman, N., Lautemann, C., Schweikardt, N., Thérien, D.: First-order expressibility of languages with neutral letters or: the Crane Beach Conjecture. J. Comput. Syst. Sci. 70, 101–127 (2005)

    Article  MathSciNet  Google Scholar 

  4. Behle, C., Krebs, A., Lange, K.J., McKenzie, P.: In: Rovan, B., Sassone, V., Widmayer, P. (eds.) Mathematical Foundations of Computer Science 2012, pp. 590–602. Springer, Berlin (2012)

  5. Behle, C., Lange, K.: In: 21st Annual IEEE Conference on Computational Complexity (CCC 2006), 16–20 July 2006, Prague, Czech Republic, pp. 183–189. IEEE Computer Society (2006). https://doi.org/10.1109/CCC.2006.20

  6. Brzozowski, J., Knast, R.: The dot-depth hierarchy of star-free languages is infinite. J. Comput. Syst. Sci. 16(1), 37–55 (1978). https://doi.org/10.1016/0022-0000(78)90049-1

    Article  MathSciNet  MATH  Google Scholar 

  7. Chandra, A.K., Fortune, S., Lipton, R.: In: Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing, STOC ’83, pp. 52–60. Association for Computing Machinery, New York (1983). https://doi.org/10.1145/800061.808732

  8. Dartois, L., Paperman, C.: In: Kosowski, A., Walukiewicz, I. (eds.) Fundamentals of Computation Theory, pp. 160–172. Springer International Publishing, Cham (2015)

  9. Diekert, V., Gastin, P., Kufleitner, M.: A survey on small fragments of first-order logic over finite words. Int. J. Found. Comput. Sci. 19(3), 513–548 (2008). https://doi.org/10.1142/S0129054108005802

    Article  MathSciNet  MATH  Google Scholar 

  10. Hahn, M., Krebs, A., Lange, K.J., Ludwig, M.: In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) Mathematical Foundations of Computer Science 2015, pp. 384–394. Springer, Berlin (2015)

  11. Koucky, M., Poloczek, S., Lautemann, C., Therien, D.: In: 21st Annual IEEE Conference on Computational Complexity (CCC’06), pp. 12–201. (2006). https://doi.org/10.1109/CCC.2006.12

  12. Koucký, M., Pudlák, P., Thérien, D.: In: STOC, pp. 257–265. ACM (2005). https://doi.org/10.1145/1060590.1060629

  13. Krebs, A., Lange, K., Ludwig, M.: In: Mayr, E.W., Ollinger, N. (eds.) 32nd International Symposium on Theoretical Aspects of Computer Science, STACS 2015, 4–7 March 2015, Garching, Germany, LIPIcs, vol. 30, pp. 594–607. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2015). https://doi.org/10.4230/LIPIcs.STACS.2015.594

  14. Krebs, A., Lange, K., Reifferscheid, S.: In: Diekert, V., Durand, B. (eds.) STACS 2005, 22nd Annual Symposium on Theoretical Aspects of Computer Science, Stuttgart, Germany, 24–26 Feb 2005, Proceedings, Lecture Notes in Computer Science, vol. 3404, pp. 496–507. Springer (2005). https://doi.org/10.1007/978-3-540-31856-9_41

  15. Kufleitner, M., Lauser, A.: In: Portier, N., Wilke, T. (eds.) 30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013), Leibniz International Proceedings in Informatics (LIPIcs), vol. 20, pp. 305–316. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2013). https://doi.org/10.4230/LIPIcs.STACS.2013.305

  16. Lange, K.: In: 19th Annual IEEE Conference on Computational Complexity (CCC 2004), 21–24 June 2004, Amherst, MA, USA, pp. 123–129. IEEE Computer Society (2004). https://doi.org/10.1109/CCC.2004.1313817

  17. Paperman, C.: Circuits booléens, prédicats modulaires et langages réguliers. Ph.D. thesis, Université Paris Diderot (2013)

  18. Pin, J.É., Straubing, H.: Some results on C-varieties. RAIRO-Theor. Inform. Appl. 39(01), 239–262 (2005)

    Article  MathSciNet  Google Scholar 

  19. Straubing, H.: Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser, Boston (1994)

    Book  Google Scholar 

  20. Tesson, P., Thérien, D. In: Semigroups, pp. 475–500. Automata and Languages (World Scientific, Algorithms (2002)

Download references

Acknowledgements

We thank Luc Dartois who contributed to some of the proofs in this paper, Corentin Barlois for expert proofreading, and the reviewers for interesting comments. Above all, we thank Klaus–Jörn for a fantastic few years in Tübingen and send him heartfelt birthday wishes for his 70th—and to many more!

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michaël Cadilhac or Charles Paperman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cadilhac, M., Paperman, C. The regular languages of wire linear AC\(^0\). Acta Informatica 59, 321–336 (2022). https://doi.org/10.1007/s00236-022-00432-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00236-022-00432-2

Navigation