Abstract
In this paper, the regular languages of wire linear \(\hbox {AC}^0\)are characterized as the languages expressible in the two-variable fragment of first-order logic with regular predicates, \(\mathrm{FO}^2[\mathrm{reg}]\). Additionally, they are characterized as the languages recognized by the algebraic class \(\mathbf {QLDA}\). The class is shown to be decidable and examples of languages in and outside of it are presented.
Similar content being viewed by others
Notes
For the reader familiar with algebraic language theory: note that to simplify presentation, we do not define varieties of monoids and see them as varieties of stamps.
References
Almeida, J.: A syntactical proof of locality of DA. Int. J. Algebra Comput. 06(02), 165–177 (1996). https://doi.org/10.1142/S021819679600009X
Barrington, D.A.M., Compton, K., Straubing, H., Thérien, D.: Regular languages in \({\rm NC}^1\). J. Comput. Syst. Sci. 44, 478–499 (1992)
Barrington, D.A.M., Immerman, N., Lautemann, C., Schweikardt, N., Thérien, D.: First-order expressibility of languages with neutral letters or: the Crane Beach Conjecture. J. Comput. Syst. Sci. 70, 101–127 (2005)
Behle, C., Krebs, A., Lange, K.J., McKenzie, P.: In: Rovan, B., Sassone, V., Widmayer, P. (eds.) Mathematical Foundations of Computer Science 2012, pp. 590–602. Springer, Berlin (2012)
Behle, C., Lange, K.: In: 21st Annual IEEE Conference on Computational Complexity (CCC 2006), 16–20 July 2006, Prague, Czech Republic, pp. 183–189. IEEE Computer Society (2006). https://doi.org/10.1109/CCC.2006.20
Brzozowski, J., Knast, R.: The dot-depth hierarchy of star-free languages is infinite. J. Comput. Syst. Sci. 16(1), 37–55 (1978). https://doi.org/10.1016/0022-0000(78)90049-1
Chandra, A.K., Fortune, S., Lipton, R.: In: Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing, STOC ’83, pp. 52–60. Association for Computing Machinery, New York (1983). https://doi.org/10.1145/800061.808732
Dartois, L., Paperman, C.: In: Kosowski, A., Walukiewicz, I. (eds.) Fundamentals of Computation Theory, pp. 160–172. Springer International Publishing, Cham (2015)
Diekert, V., Gastin, P., Kufleitner, M.: A survey on small fragments of first-order logic over finite words. Int. J. Found. Comput. Sci. 19(3), 513–548 (2008). https://doi.org/10.1142/S0129054108005802
Hahn, M., Krebs, A., Lange, K.J., Ludwig, M.: In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) Mathematical Foundations of Computer Science 2015, pp. 384–394. Springer, Berlin (2015)
Koucky, M., Poloczek, S., Lautemann, C., Therien, D.: In: 21st Annual IEEE Conference on Computational Complexity (CCC’06), pp. 12–201. (2006). https://doi.org/10.1109/CCC.2006.12
Koucký, M., Pudlák, P., Thérien, D.: In: STOC, pp. 257–265. ACM (2005). https://doi.org/10.1145/1060590.1060629
Krebs, A., Lange, K., Ludwig, M.: In: Mayr, E.W., Ollinger, N. (eds.) 32nd International Symposium on Theoretical Aspects of Computer Science, STACS 2015, 4–7 March 2015, Garching, Germany, LIPIcs, vol. 30, pp. 594–607. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2015). https://doi.org/10.4230/LIPIcs.STACS.2015.594
Krebs, A., Lange, K., Reifferscheid, S.: In: Diekert, V., Durand, B. (eds.) STACS 2005, 22nd Annual Symposium on Theoretical Aspects of Computer Science, Stuttgart, Germany, 24–26 Feb 2005, Proceedings, Lecture Notes in Computer Science, vol. 3404, pp. 496–507. Springer (2005). https://doi.org/10.1007/978-3-540-31856-9_41
Kufleitner, M., Lauser, A.: In: Portier, N., Wilke, T. (eds.) 30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013), Leibniz International Proceedings in Informatics (LIPIcs), vol. 20, pp. 305–316. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2013). https://doi.org/10.4230/LIPIcs.STACS.2013.305
Lange, K.: In: 19th Annual IEEE Conference on Computational Complexity (CCC 2004), 21–24 June 2004, Amherst, MA, USA, pp. 123–129. IEEE Computer Society (2004). https://doi.org/10.1109/CCC.2004.1313817
Paperman, C.: Circuits booléens, prédicats modulaires et langages réguliers. Ph.D. thesis, Université Paris Diderot (2013)
Pin, J.É., Straubing, H.: Some results on C-varieties. RAIRO-Theor. Inform. Appl. 39(01), 239–262 (2005)
Straubing, H.: Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser, Boston (1994)
Tesson, P., Thérien, D. In: Semigroups, pp. 475–500. Automata and Languages (World Scientific, Algorithms (2002)
Acknowledgements
We thank Luc Dartois who contributed to some of the proofs in this paper, Corentin Barlois for expert proofreading, and the reviewers for interesting comments. Above all, we thank Klaus–Jörn for a fantastic few years in Tübingen and send him heartfelt birthday wishes for his 70th—and to many more!
Author information
Authors and Affiliations
Corresponding authors
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Cadilhac, M., Paperman, C. The regular languages of wire linear AC\(^0\). Acta Informatica 59, 321–336 (2022). https://doi.org/10.1007/s00236-022-00432-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00236-022-00432-2