Distances in random digital search trees | Acta Informatica Skip to main content
Log in

Distances in random digital search trees

  • Original Article
  • Published:
Acta Informatica Aims and scope Submit manuscript

Abstract

Distances between nodes in random trees is a popular topic, and several classes of trees have recently been investigated. We look into this matter in digital search trees. By analytic techniques, such as the Mellin Transform and poissonization, we describe a program to determine the moments of these distances. The program is illustrated on the mean and variance. One encounters delayed Mellin transform equations, which we solve by inspection. In addition to various asymptotics, we give an exact expression for the mean and for the variance in the unbiased case. Interestingly, the unbiased case gives a bounded variance, whereas the biased case gives a variance growing with the number of keys. It is therefore possible in the biased case to show that an appropriately normalized version of the distance converges to a limit. The complexity of moment calculation increases substantially with each higher moment; it is prudent to seek a shortcut to the limit via a method that avoids the computation of all moments. Toward this end, we utilize the contraction method to show that in biased digital search trees the distribution of a suitably normalized version of the distances approaches a limit that is the fixed-point solution of a distributional equation (distances being measured in the Wasserstein metric space). An explicit solution to the fixed-point equation is readily demonstrated to be Gaussian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aguech R., Lasmar N., Mahmoud H. (2006) Limit distribution of distances in biased random tries. J. Appl. Probab. 43, 1–14

    Article  MathSciNet  Google Scholar 

  2. Chern H., Hwang H., Tsai T. (2002) An asymptotic theory for Cauchy-Euler differential equations with applications to the analysis of algorithms. J. Algorithms 44, 177–225

    Article  MATH  MathSciNet  Google Scholar 

  3. Christophi C., Mahmoud H. (2005) The oscillatory distribution of distances in random tries. Ann. Appl. Probab. 15, 1536–1564

    Article  MATH  MathSciNet  Google Scholar 

  4. Coffman E., Eve J.: File structures using hashing functions. Commun. ACM 13, 427–432, and 436 (1970)

    Google Scholar 

  5. Devroye L., Neininger R. (2004) Distances and finger search in random binary search trees. SIAM J. Comput. 33, 647–658

    Article  MATH  MathSciNet  Google Scholar 

  6. Flajolet P., Sedgewick R. (1986) Digital search trees revisited. SIAM J. Comput. 15, 748–767

    Article  MATH  MathSciNet  Google Scholar 

  7. Flajolet P., Gourdon X., Dumas P. (1995) Mellin transform and asymptotic harmonic sums. Theor. Comput. Sci. 144, 3–58

    Article  MATH  MathSciNet  Google Scholar 

  8. Gutman I., Polansky O. (1986) Mathematical Concepts in Organic Chemistry. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  9. Jacquet P.: Contribution de l’Analyse d’Algorithmes a l’Evaluation de Protocoles de Communication. Thèse Université de Paris Sud-Orsay, Paris (1989)

  10. Jacquet P., Szpankowski W. (1998) Analytical depoissonization and its applications. Theor. Comput. Sci. 201, 1–62

    Article  MATH  MathSciNet  Google Scholar 

  11. Kirschenhofer P., Prodinger H. (1988) Further results on digital search trees. Theor. Comput. Sci. 58, 143–154

    Article  MATH  MathSciNet  Google Scholar 

  12. Kirschenhofer P., Prodinger H., Szpankowski W. (1994) Digital search trees again revisited: the internal path length perspective. SIAM J. Comput. 23, 598–616

    Article  MATH  MathSciNet  Google Scholar 

  13. Knuth D. The Art of Computer Programming, Vol. 3: Sorting and Searching, 2nd ed. Addison-Wesley, Reading, MA (1998)

  14. Louchard G. (1987) Exact and asymptotic distributions in digital and binary search trees. RAIRO: Theor. Informat. Appl. 21, 479–495

    MATH  MathSciNet  Google Scholar 

  15. Louchard G., Szpankowski W. (1995) Average profile and limiting distribution for a phrase size in the Lempel-Ziv parsing algorithm. IEEE Trans. Informat. Theory 41, 478–488

    Article  MATH  Google Scholar 

  16. Louchard G., Szpankowski W., Tang J. (1999) Average profile of the generalized digital-search tree and the generalized Lempel-Ziv algorithms. SIAM J. Comput. 28, 935–954

    Article  MathSciNet  Google Scholar 

  17. Mahmoud H. (1992) Evolution of Random Search Trees. Wiley, New York

    MATH  Google Scholar 

  18. Mahmoud M., Neininger R. (2003) Distribution of distances in random binary search trees. Ann. Appl. Probab. 13, 253–276

    Article  MATH  MathSciNet  Google Scholar 

  19. Mathys P., Flajolet P. (1985) Q-ary collision resolution algorithms in random-access systems with free and blocked channel access. IEEE Trans. Informat. Theory 31, 217–243

    Article  MATH  MathSciNet  Google Scholar 

  20. Neininger R. (2001) On a multivariate contraction method for random recursive structures with applications to Quicksort. Random Struct. Algorithms 19, 498–524

    Article  MATH  MathSciNet  Google Scholar 

  21. Neininger R. (2002) The Wiener index of random trees. Combinat. Probab. Comput. 11, 587–597

    Article  MATH  MathSciNet  Google Scholar 

  22. Neininger R., Rüschendorf L. (2004) A general limit theorem for recursive algorithms and combinatorial structures. Ann. Appl. Probab. 14, 378–418

    Article  MATH  MathSciNet  Google Scholar 

  23. Panholzer A., Prodinger H. (2004) Spanning tree size in random binary search trees. Ann. Appl. Probab. 14, 718–733

    Article  MATH  MathSciNet  Google Scholar 

  24. Pittel B. (1985) Asymptotical growth of a class of random trees. Ann. Probab. 13, 414–427

    MATH  MathSciNet  Google Scholar 

  25. Rachev S., Rüschendorf L. (1995) Probability metrics and recursive algorithms. Adv. Appl. Probab. 27, 770–799

    Article  MATH  Google Scholar 

  26. Rösler U. (1991) A limit theorem for “Quicksort”. RAIRO Inform. Théor. Appl. 25, 85–100

    MATH  MathSciNet  Google Scholar 

  27. Rösler U. (2001) On the analysis of stochastic divide and conquer algorithms. Algorithmica, 29, 238–261

    MATH  MathSciNet  Google Scholar 

  28. Rösler U., Rüschendorf L. (2001) The contraction method for recursive algorithms. Algorithmica 29, 3–33

    MATH  MathSciNet  Google Scholar 

  29. Schachinger W.: Beiträge zur Analyse von Datenstrukturen zur Digitalen Suche. Dissertation Technische Universität Wien, Vienna (1993)

  30. Szpankowski W. (1991) A characterization of digital search trees from the successful search viewpoint. Theor. Comput. Sci. 85, 117–134

    Article  MATH  MathSciNet  Google Scholar 

  31. Szpankowski W. (2001) Average Case Analysis of Algorithms on Sequences. Wiley, New York

    MATH  Google Scholar 

  32. Trinajstić N. (1992) Chemical Graph Theory. CRC Press, Boca Raton FL

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rafik Aguech or Hosam Mahmoud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aguech, R., Lasmar, N. & Mahmoud, H. Distances in random digital search trees. Acta Informatica 43, 243–264 (2006). https://doi.org/10.1007/s00236-006-0019-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00236-006-0019-7

Keywords

AMS Subject Classifications