Obstructions to Return Preservation for Episturmian Morphisms | Theory of Computing Systems Skip to main content
Log in

Obstructions to Return Preservation for Episturmian Morphisms

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

This paper studies obstructions to preservation of return sets by episturmian morphisms. We show, by way of an explicit construction, that infinitely many obstructions exist. This generalizes and improves an earlier result about Sturmian morphisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Almeida, J., Costa, A.: Presentations of Schützenberger groups of minimal subshifts. Israel J. Math. 196(1), 1–31 (2013). https://doi.org/10.1007/s11856-012-0139-4

    Article  MathSciNet  Google Scholar 

  2. Almeida, J., Costa, A.: A geometric interpretation of the Schützenberger group of a minimal subshift. Ark. Math. 54(2), 243–275 (2016). https://doi.org/10.1007/s11512-016-0233-7

    Article  Google Scholar 

  3. Arnoux, P., Rauzy, G.: Représentation géométrique de suites de complexité 2n + 1. Bull. Soc. Math. Fr. 119(2), 199–215 (1991). https://doi.org/10.24033/bsmf.2164

    Article  Google Scholar 

  4. Berthé, V., Goulet-Ouellet, H.: On substitutions preserving their return sets. In: Frid, A., Mercas, R. (eds.) Combinatorics on words, WORDS 2023, volume 13899 of Lecture Notes in Computer Science, pp. 77–90 (2023). https://doi.org/10.1007/978-3-031-33180-0_6

  5. Berthé, V., De Felice, C., Dolce, F., Leroy, J., Perrin, D., Reutenauer, C., Rindone, G.: Acyclic, connected and tree sets. Monatsh. Math. 176(4), 521–550 (2015). https://doi.org/10.1007/s00605-014-0721-4

    Article  MathSciNet  Google Scholar 

  6. Cassaigne, J., Chekhova, N.: Fonctions de récurrence des suites d’Arnoux-Rauzy et réponse à une question de Morse et Hedlund. Ann. Inst. Fourier 56(7), 2249–2270 (2006). https://doi.org/10.5802/aif.2239

    Article  MathSciNet  Google Scholar 

  7. Castelli, M., Mignosi, F., Restivo, A.: Fine and Wilf’s theorem for three periods and a generalization of Sturmian words. Theoret. Comput. Sci. 218(1), 83–94 (1999). https://doi.org/10.1016/s0304-3975(98)00251-5

    Article  MathSciNet  Google Scholar 

  8. de Luca, A.: Sturmian words: structure, combinatorics, and their arithmetics. Theoret. Comput. Sci. 183(1), 45–82 (1997). https://doi.org/10.1016/s0304-3975(96)00310-6

    Article  MathSciNet  Google Scholar 

  9. Droubay, X., Justin, J., Pirillo, G.: Episturmian words and some constructions of De Luca and Rauzy. Theoret. Comput. Sci. 255(1–2), 539–553 (2001). https://doi.org/10.1016/s0304-3975(99)00320-5

    Article  MathSciNet  Google Scholar 

  10. Durand, F.: A characterization of substitutive sequences using return words. Discrete Math. 179(1–3), 89–101 (1998). https://doi.org/10.1016/S0012-365X(97)00029-0

    Article  MathSciNet  Google Scholar 

  11. Durand, F., Perrin, D.: Dimension Groups and Dynamical Systems. Cambridge Studies in Advanced Mathematics. Cambridge University Press (2022). https://doi.org/10.1017/9781108976039

  12. Fogg, N.P.: Substitutions in Dynamics, Arithmetics and Combinatorics. Springer Berlin Heidelberg (2002). https://doi.org/10.1007/b13861. Edited by Berthé, V., Ferenczi, S., Mauduit, C., Siegel, A.

  13. Glen, A., Justin, J.: Episturmian words: A survey. RAIRO Theor. Inform. Appl. 43(3), 403–442 (2009). https://doi.org/10.1051/ita/2009003

    Article  MathSciNet  Google Scholar 

  14. Glen, A., Levé, F., Richomme, G.: Directive words of episturmian words: equivalences and normalization. RAIRO Theor. Inform. Appl. 43(2), 299–319 (2009). https://doi.org/10.1051/ita:2008029

    Article  MathSciNet  Google Scholar 

  15. Goulet-Ouellet, H.: Suffix-connected languages. Theoret. Comput. Sci. 923, 126–143 (2022). https://doi.org/10.1016/j.tcs.2022.05.001

    Article  MathSciNet  Google Scholar 

  16. Justin, J.: On a paper by Castelli, Mignosi, Restivo. RAIRO Theor. Inform. Appl. 34(5), 373–377 (2000). https://doi.org/10.1051/ita:2000122

    Article  Google Scholar 

  17. Justin, J.: Episturmian morphisms and a Galois theorem on continued fractions. RAIRO Theor. Inform. Appl. 39(1), 207–215 (2005). https://doi.org/10.1051/ita:2005012

    Article  MathSciNet  Google Scholar 

  18. Justin, J., Pirillo, G.: Episturmian words and episturmian morphisms. Theoret. Comput. Sci. 276(1–2), 281–313 (2002). https://doi.org/10.1016/s0304-3975(01)00207-9

    Article  MathSciNet  Google Scholar 

  19. Justin, J., Vuillon, L.: Return words in Sturmian and episturmian words. RAIRO Theor. Inform. Appl. 34(5), 343–356 (2000). https://doi.org/10.1051/ita:2000121

    Article  MathSciNet  Google Scholar 

  20. Lothaire, M.: Algebraic combinatorics on words. Cambridge University Press (2002)

  21. Perrin, D., Reutenauer, C.: The palindromization map. Discrete Appl. Math. 340, 202–214 (2023). https://doi.org/10.1016/j.dam.2023.07.008

    Article  MathSciNet  Google Scholar 

  22. Queffélec, M.: Substitution Dynamical Systems: Spectral Analysis. Springer Berlin Heidelberg (2010). https://doi.org/10.1007/978-3-642-11212-6

  23. Rauzy, G.: Nombres algébriques et substitutions. Bull. Soc. Math. Fr. 79, 147–178 (1982). https://doi.org/10.24033/bsmf.1957

    Article  Google Scholar 

  24. Richomme, G.: Conjugacy and episturmian morphisms. Theoret. Comput. Sci. 302(1–3), 1–34 (2003). https://doi.org/10.1016/s0304-3975(02)00726-0

    Article  MathSciNet  Google Scholar 

  25. Richomme, G.: Some algorithms to compute the conjugates of episturmian morphisms. RAIRO Theor. Inform. Appl. 37(1), 85–104 (2003). https://doi.org/10.1051/ita:2003009

    Article  MathSciNet  Google Scholar 

  26. Séébold, P.: On the conjugation of standard morphisms. Theoret. Comput. Sci. 195(1), 91–109 (1998). https://doi.org/10.1016/s0304-3975(97)00159-x

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors warmly thank the referees who helped us to improve the previous version of this paper.

Author information

Authors and Affiliations

Authors

Contributions

Both authors have contributed to this paper.

Corresponding author

Correspondence to Valérie Berthé.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the Agence Nationale de la Recherche through the project SymDynAr (ANR-23-CE40-0024-01). The second author was supported by the CTU Global Postdoc Fellowship program.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berthé, V., Goulet-Ouellet, H. Obstructions to Return Preservation for Episturmian Morphisms. Theory Comput Syst 68, 1512–1536 (2024). https://doi.org/10.1007/s00224-024-10190-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-024-10190-y

Keywords

Navigation