Abstract
We show how to hang a picture by wrapping rope around n nails, making a polynomial number of twists, such that the picture falls whenever any k out of the n nails get removed, and the picture remains hanging when fewer than k nails get removed. This construction makes for some fun mathematical magic performances. More generally, we characterize the possible Boolean functions characterizing when the picture falls in terms of which nails get removed as all monotone Boolean functions. This construction requires an exponential number of twists in the worst case, but exponential complexity is almost always necessary for general functions.
Similar content being viewed by others
Notes
This construction also turns out to be essentially the same as the solution that comes out of the Brunnian-link construction described in Sect. 3.1.
References
Ajtai, M., Komlós, J., Szemerédi, E.: Sorting in clogn parallel steps. Combinatorica 3(1), 1–19 (1983)
Brunn, H.: Über Verkettung. In: Sitzungsbericht der Bayerischen Akademie der Wissenschaft Mathematisch Naturwissenschaftliche Abteilung, vol. 22, pp. 77–99 (1892)
Demaine, E.D., Demaine, M.L., Uehara, R.: Any monotone Boolean function can be realized by interlocked polygons. In: Proceedings of the 22nd Canadian Conference on Computational Geometry, Winnipeg, Canada, August 2010, pp. 139–142 (2010)
Ellul, K., Krawetz, B., Shallit, J., Wang, M.-w.: Regular expressions: new results and open problems. J. Autom. Lang. Comb. 9(2–3), 233–256 (2005)
Makanin, G.S.: Decidability of the universal and positive theories of a free group. Math. USSR, Izv. 25(1), 75–88 (1985). Translated from Russian edition, 48(4) (1984)
Paterson, M.S.: Improved sorting networks with O(logN) depth. Algorithmica 5, 75–92 (1990)
Pegg Jr., Ed: Picture Hanging (2002). http://www.mathpuzzle.com/hangingpicture.htm
Rolfsen, D.: Knots and Links. Publish or Perish, Houston (1976)
Sillke, T.: Strange painting (2001). http://www.mathematik.uni-bielefeld.de/~sillke/PUZZLES/quantum/B201
Sloane, N.J.A.: Sequence A073121. In: On-Line Encyclopedia of Integer Sequences (2002). http://www.research.att.com/projects/OEIS?Anum=A073121
Spivak, A.: Brainteasers B 201: Strange painting. Quantum, page 13 (1997). Solution on page 60, figure 5
Theodore, S.: Brunnian braids and some of their generalizations. (1999). http://arXiv.org/abs/math/9907072. To appear in Bulletin of the London Mathematical Society
Tait, P.G.: On knots. Trans. R. Soc. Edinb. 28, 145–190 (1876)
vos Savant, M., Marilyn, A.: PARADE (2001). Puzzle posed in June 10 issue and solved in June 17 issue
Acknowledgements
We thank Jason Cantarella for helpful early discussions, Kim Whittlesey for pointing out reference [12], and the anonymous referees for helpful comments.
Author information
Authors and Affiliations
Corresponding author
Additional information
A preliminary version of this paper appeared in Proceedings of the 6th International Conference on Fun with Algorithms, Venice, 2012.
J.S.B. Mitchell was partially supported by NSF grant CCF-1018388.
Appendix: Puzzle Solutions
Appendix: Puzzle Solutions
This appendix gives solutions to the puzzles from Sect. 2 in the free-group notation defined in Sect. 3.2. These solutions are based on the basic theory described in Sect. 3, though they do not all fall under the specific statement of Theorem 2. The solutions are not unique; shorter solutions may well exist.
Puzzle 1
Figure 6 shows \(S_{3} = x_{1} x_{2} x_{3} x_{2}^{-1} x_{3}^{-1} x_{1}^{-1} x_{3} x_{2} x_{3}^{-1} x_{2}^{-1}\).
Puzzle 2
\(x_{1} x_{2} x_{3} x_{1}^{-1} x_{2}^{-1} x_{3}^{-1}\).
Puzzle 3
\([x_{1}, x_{2} x_{3}] = x_{1} x_{2} x_{3} x_{1}^{-1} x_{3}^{-1} x_{2}^{-1}\), where the nails are ordered from left to right.
Puzzle 4
\(E(1:4) = x_{1} x_{2} x_{1}^{-1} x_{2}^{-1} x_{3} x_{4} x_{3}^{-1} x_{4}^{-1} x_{2} x_{1} x_{2}^{-1} x_{1}^{-1} x_{4} x_{3} x_{4}^{-1} x_{3}^{-1}\).
Puzzle 5
\([[x_{1} x_{2}, [x_{1} x_{3}, x_{1} x_{4}]], [x_{2} x_{3}, [x_{2} x_{4}, x_{3} x_{4}]]] = x_{1} x_{2} x_{1} x_{3} x_{1} x_{4} x_{3}^{-1} x_{1}^{-1} x_{4}^{-1} x_{1}^{-1} x_{2}^{-1} x_{1}^{-1} x_{1} x_{4} x_{1} x_{3} x_{4}^{-1} x_{1}^{-1} x_{3}^{-1} x_{1}^{-1} x_{2} x_{3} x_{2} x_{4} x_{3} x_{4} x_{4}^{-1} x_{2}^{-1} x_{4}^{-1} x_{3}^{-1} x_{3}^{-1} x_{2}^{-1} x_{3} x_{4} x_{2} x_{4} x_{4}^{-1} x_{3}^{-1} x_{4}^{-1} x_{2}^{-1} x_{1} x_{3} x_{1} x_{4} x_{3}^{-1} x_{1}^{-1} x_{4}^{-1} x_{1}^{-1} x_{1} x_{2} x_{1} x_{4} x_{1} x_{3} x_{4}^{-1} x_{1}^{-1} x_{3}^{-1} x_{1}^{-1} x_{2}^{-1} x_{1}^{-1} x_{2} x_{4}x_{3} x_{4} x_{4}^{-1} x_{2}^{-1} x_{4}^{-1} x_{3}^{-1} x_{2} x_{3} x_{3} x_{4} x_{2} x_{4} x_{4}^{-1} x_{3}^{-1} x_{4}^{-1} x_{2}^{-1} x_{3}^{-1} x_{2}^{-1}\).
Puzzle 6
\(x_{1} x_{2} x_{3} x_{4} x_{1}^{-1} x_{2}^{-1} x_{3}^{-1} x_{4}^{-1}\).
Puzzle 7
\([x_{1} x_{2}, x_{3} x_{4}] = x_{1} x_{2} x_{3} x_{4} x_{2}^{-1} x_{1}^{-1} x_{4}^{-1} x_{3}^{-1}\), where x 1 and x 2 are red and x 3 and x 4 are blue.
Puzzle 8
\([S_{2}, x_{3} x_{4}] = x_{1} x_{2} x_{1}^{-1} x_{2}^{-1} x_{3} x_{4} x_{2} x_{1} x_{2}^{-1} x_{1}^{-1} x_{4}^{-1} x_{3}^{-1}\), where x 1 and x 2 are red and x 3 and x 4 are blue.
Puzzle 9
\([S_{3}, x_{4} x_{5} x_{6}] = x_{1} x_{2} x_{3} x_{2}^{-1} x_{3}^{-1} x_{1}^{-1} x_{3} x_{2} x_{3}^{-1} x_{2}^{-1} x_{4} x_{5} x_{6} x_{2} x_{3} x_{2}^{-1} x_{3}^{-1} x_{1} x_{3} x_{2} x_{3}^{-1} x_{2}^{-1} x_{1}^{-1} x_{6}^{-1} x_{5}^{-1} x_{4}^{-1}\), where x 1, x 2, and x 3 are red and x 4, x 5, and x 6 are blue.
Puzzle 10
\([S_{3}, x_{4} x_{5} x_{6} x_{4}^{-1} x_{5}^{-1} x_{6}^{-1}] = x_{1} x_{2} x_{3} x_{2}^{-1} x_{3}^{-1} x_{1}^{-1} x_{3} x_{2} x_{3}^{-1} x_{2}^{-1} x_{4} x_{5} x_{6} x_{4}^{-1} x_{5}^{-1} x_{6}^{-1} x_{2} x_{3} x_{2}^{-1} x_{3}^{-1} x_{1} x_{3} x_{2} x_{3}^{-1} x_{2}^{-1} x_{1}^{-1} x_{6} x_{5} x_{4} x_{6}^{-1} x_{5}^{-1} x_{4}^{-1}\), where x 1, x 2, and x 3 are red and x 4, x 5, and x 6 are blue.
Puzzle 11
\([[[x_{1}x_{3}, [x_{2}x_{4}, x_{1}x_{5}]], [x_{3}x_{6}, [x_{1}x_{4}, x_{2}x_{3}]]], [[x_{1}x_{6}, [x_{2}x_{5}, x_{4}x_{6}]], [x_{3}x_{5}, [x_{2}x_{6}, x_{4}x_{5}]]]] = x_{1} x_{3} x_{2} x_{4} x_{1} x_{5} x_{4}^{-1} x_{2}^{-1} x_{5}^{-1} x_{1}^{-1} x_{3}^{-1} x_{1}^{-1} x_{1} x_{5} x_{2} x_{4} x_{5}^{-1} x_{1}^{-1} x_{4}^{-1} x_{2}^{-1} x_{3} x_{6} x_{1} x_{4} x_{2} x_{3} x_{4}^{-1} x_{1}^{-1} x_{3}^{-1} x_{2}^{-1} x_{6}^{-1} x_{3}^{-1} x_{2} x_{3} x_{1} x_{4} x_{3}^{-1} x_{2}^{-1} x_{4}^{-1} x_{1}^{-1} x_{2} x_{4} x_{1} x_{5} x_{4}^{-1} x_{2}^{-1}\! x_{5}^{-1}\! x_{1}^{-1} x_{1} x_{3} x_{1} x_{5} x_{2} x_{4} x_{5}^{-1} x_{1}^{-1} x_{4}^{-1} x_{2}^{-1} x_{3}^{-1} x_{1}^{-1} x_{1} x_{4} x_{2} x_{3} x_{4}^{-1} x_{1}^{-1} x_{3}^{-1} x_{2}^{-1} x_{3} x_{6} x_{2} x_{3} x_{1} x_{4} x_{3}^{-1} x_{2}^{-1} x_{4}^{-1} x_{1}^{-1} x_{6}^{-1} x_{3}^{-1} x_{1} x_{6} x_{2} x_{5} x_{4} x_{6} x_{5}^{-1} x_{2}^{-1} x_{6}^{-1} x_{4}^{-1} x_{6}^{-1} x_{1}^{-1} x_{4} x_{6} x_{2} x_{5} x_{6}^{-1} x_{4}^{-1} x_{5}^{-1}x_{2}^{-1}x_{3} x_{5} x_{2} x_{6} x_{4} x_{5} x_{6}^{-1} x_{2}^{-1} x_{5}^{-1} x_{4}^{-1} x_{5}^{-1} x_{3}^{-1} x_{4} x_{5} x_{2} x_{6} x_{5}^{-1} x_{4}^{-1} x_{6}^{-1} x_{2}^{-1} x_{2} x_{5} x_{4} x_{6} x_{5}^{-1} x_{2}^{-1} x_{6}^{-1} x_{4}^{-1} x_{1} x_{6} x_{4} x_{6} x_{2} x_{5} x_{6}^{-1} x_{4}^{-1} x_{5}^{-1} x_{2}^{-1} x_{6}^{-1} x_{1}^{-1} x_{2} x_{6} x_{4} x_{5} x_{6}^{-1} x_{2}^{-1} x_{5}^{-1} x_{4}^{-1} x_{3} x_{5} x_{4} x_{5} x_{2} x_{6} x_{5}^{-1} x_{4}^{-1} x_{6}^{-1} x_{2}^{-1} x_{5}^{-1} x_{3}^{-1} x_{3} x_{6} x_{1} x_{4} x_{2} x_{3} x_{4}^{-1} x_{1}^{-1} x_{3}^{-1} x_{2}^{-1} x_{6}^{-1} x_{3}^{-1} x_{2} x_{3} x_{1} x_{4} x_{3}^{-1} x_{2}^{-1} x_{4}^{-1} x_{1}^{-1} x_{1} x_{3} x_{2} x_{4} x_{1} x_{5} x_{4}^{-1} x_{2}^{-1} x_{5}^{-1} x_{1}^{-1} x_{3}^{-1} x_{1}^{-1} x_{1} x_{5} x_{2} x_{4} x_{5}^{-1} x_{1}^{-1} x_{4}^{-1} x_{2}^{-1} x_{1} x_{4} x_{2} x_{3} x_{4}^{-1} x_{1}^{-1} x_{3}^{-1} x_{2}^{-1} x_{3} x_{6} x_{2} x_{3} x_{1} x_{4} x_{3}^{-1} x_{2}^{-1} x_{4}^{-1} x_{1}^{-1} x_{6}^{-1} x_{3}^{-1} x_{2} x_{4} x_{1} x_{5} x_{4}^{-1} x_{2}^{-1} x_{5}^{-1} x_{1}^{-1} x_{1} x_{3} x_{1} x_{5} x_{2} x_{4} x_{5}^{-1} x_{1}^{-1} x_{4}^{-1} x_{2}^{-1} x_{3}^{-1} x_{1}^{-1} x_{3} x_{5} x_{2} x_{6} x_{4} x_{5} x_{6}^{-1} x_{2}^{-1} x_{5}^{-1} x_{4}^{-1} x_{5}^{-1} x_{3}^{-1} x_{4} x_{5} x_{2} x_{6} x_{5}^{-1} x_{4}^{-1} x_{6}^{-1} x_{2}^{-1} x_{1} x_{6} x_{2} x_{5} x_{4} x_{6} x_{5}^{-1} x_{2}^{-1} x_{6}^{-1} x_{4}^{-1} x_{6}^{-1} x_{1}^{-1} x_{4} x_{6} x_{2} x_{5} x_{6}^{-1} x_{4}^{-1} x_{5}^{-1} x_{2}^{-1} x_{2} x_{6} x_{4} x_{5} x_{6}^{-1} x_{2}^{-1} x_{5}^{-1} x_{4}^{-1} x_{3} x_{5} x_{4} x_{5} x_{2} x_{6} x_{5}^{-1} x_{4}^{-1} x_{6}^{-1} x_{2}^{-1} x_{5}^{-1} x_{3}^{-1} x_{2} x_{5} x_{4} x_{6} x_{5}^{-1} x_{2}^{-1} x_{6}^{-1} x_{4}^{-1} x_{1} x_{6} x_{4} x_{6} x_{2} x_{5} x_{6}^{-1} x_{4}^{-1} x_{5}^{-1} x_{2}^{-1} x_{6}^{-1} x_{1}^{-1}\), where x 1 and x 2 are red, x 3 and x 4 are green, and x 5 and x 6 are blue.
Rights and permissions
About this article
Cite this article
Demaine, E.D., Demaine, M.L., Minsky, Y.N. et al. Picture-Hanging Puzzles. Theory Comput Syst 54, 531–550 (2014). https://doi.org/10.1007/s00224-013-9501-0
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00224-013-9501-0