The Complexity of Explicit Constructions | Theory of Computing Systems Skip to main content
Log in

The Complexity of Explicit Constructions

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

The existence of extremal combinatorial objects, such as Ramsey graphs and expanders, is often shown using the probabilistic method. It is folklore that pseudo-random generators can be used to obtain explicit constructions of these objects, if the test that the object is extremal can be implemented in polynomial time. In this paper, we pose several questions geared towards initiating a structural approach to the relationship between extremal combinatorics and computational complexity. One motivation for such an approach is to understand better why circuit lower bounds are hard. Another is to formalize connections between the two areas, so that progress in one leads automatically to progress in the other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrawal, M., Kayal, N., Saxena, N.: PRIMES is in P. Report, Department of Computer Science and Engineering, Indian Institute of Technology, Kanpur (2002)

  2. Alon, N., Spencer, J.H.: The Probabilistic Method. Wiley, New York (1992), with an appendix on open problems by Paul Erdös

    MATH  Google Scholar 

  3. Arora, S., Barak, B.: Complexity Theory: A Modern Approach. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  4. Barak, B., Rao, A., Shaltiel, R., Wigderson, A.: 2-source dispersers for sub-polynomial entropy and Ramsey graphs beating the Frankl-Wilson construction. In: Proceedings of 38th Symposium on Theory of Computing, pp. 671–680 (2006)

    Google Scholar 

  5. Blum, M., Micali, S.: How to generate cryptographically strong sequence of pseudo-random bits. SIAM J. Comput. 13, 850–864 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  6. Blum, M., Karp, R., Vornberger, O., Papadimitriou, C., Yannakakis, M.: The complexity of testing whether a graph is a superconcentrator. Inf. Process. Lett. 13(4–5), 164–167 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  7. Frankl, P., Wilson, R.: Intersection theorems with geometric consequences. Combinatorica 1, 357–368 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  8. Harnik, D., Kilian, J., Naor, M., Reingold, O., Rosen, A.: Robust combiners for oblivious transfer and other cryptographic primitives. In: Proceedings of 24th International Conference on the Theory and Application of Cryptographic Techniques (CRYPTO ’95), pp. 96–113 (2005)

    Google Scholar 

  9. Impagliazzo, R., Wigderson, A.: P = BPP if E requires exponential circuits: Derandomizing the XOR lemma. In: Proceedings of the 29th Annual ACM Symposium on the Theory of Computing, pp. 220–229 (1997)

    Google Scholar 

  10. Jerrum, M.: Large cliques elude the metropolis process. Random Struct. Algorithms 3(4), 347–359 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kabanets, V., Cai, J.-Y.: Circuit minimization problem. In: Proceedings of the Thirty Second Annual ACM Symposium on Theory of Computing, Portland, Oregon, May 21–23, 2000, pp. 73–79. ACM Press, New York (2000)

    Chapter  Google Scholar 

  12. Klivans, A., van Melkebeek, D.: Graph nonisomorphism has subexponential size proofs unless the polynomial hierarchy collapses. SIAM J. Comput. 31(5), 1501–1526 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kucera, L.: Expected complexity of graph partitioning problems. Discrete Appl. Math. 57(2–3), 193–212 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, M., Vitanyi, P.: Introduction to Kolmogorov Complexity and Its Applications. Springer, Berlin (1993)

    MATH  Google Scholar 

  15. Lokam, S.: Complexity lower bounds using linear algebra. Found. Trends Theor. Comput. Sci. 4(1–2), 1–155 (2009)

    MathSciNet  MATH  Google Scholar 

  16. Nisan, N., Wigderson, A.: Hardness vs randomness. J. Comput. Syst. Sci. 49(2), 149–167 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Razborov, A., Rudich, S.: Natural proofs. J. Comput. Syst. Sci. 55(1), 24–35 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Spencer, J.: From Erdos to algorithms. Discrete Math. 136(1–3), 295–307 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Trevisan, L.: Pseudorandomness and combinatorial constructions. Electron. Colloq. Comput. Complex. 13(13) (2006)

  20. Vadhan, S.: The unified theory of pseudorandomness. ACM SIGAST News 38, 39–54 (2007)

    Article  Google Scholar 

  21. Valiant, L.G.: Graph-theoretic arguments in low-level complexity. In: Gruska, J. (ed.) Proceedings of the 6th Symposium on Mathematical Foundations of Computer Science, Tatranská Lomnica, Czechoslovakia, September 1977. LNCS, vol. 53, pp. 162–176. Springer, Berlin (1977)

    Google Scholar 

  22. Valiant, L., Vazirani, V.: NP is as easy as detecting unique solutions. In: Proceedings of the Seventeenth Annual ACM Symposium on Theory of Computing, pp. 458–463 (1985)

    Chapter  Google Scholar 

  23. Yao, A.: Theory and application of trapdoor functions. In: Proceedings of the 23rd Annual IEEE Symposium on Foundations of Computer Science, pp. 80–91 (1982)

    Google Scholar 

Download references

Acknowledgements

I am grateful to Lance Fortnow and Srikanth Srinivasan for several productive discussions. Lance kindly allowed me to include Theorem 16 in this paper. Thanks also to Tony Tan for pointing me to the paper by Spencer [18].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Santhanam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santhanam, R. The Complexity of Explicit Constructions. Theory Comput Syst 51, 297–312 (2012). https://doi.org/10.1007/s00224-011-9368-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-011-9368-x

Keywords

Navigation