Occipital network for figure/ground organization | Experimental Brain Research Skip to main content
Log in

Occipital network for figure/ground organization

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

To study the cortical mechanism of figure/ground categorization in the human brain, we employed fMRI and the temporal-asynchrony paradigm. This paradigm is able to eliminate any differential activation for local stimulus features, and thus to identify only global perceptual interactions. Strong segmentation of the image into different spatial configurations was generated solely from temporal asynchronies between zones of homogeneous dynamic noise. The figure/ground configuration was a single geometric figure enclosed in a larger surround region. In a control condition, the figure/ground organization was eliminated by segmenting the noise field into many identical temporal-asynchrony stripes. The manipulation of the type of perceptual organization triggered dramatic reorganization in the cortical activation pattern. The figure/ground configuration generated suppression of the ground representation (limited to early retinotopic visual cortex, V1 and V2) and strong activation in the motion complex hMT+/V5+; conversely, both responses were abolished when the figure/ground organization was eliminated. These results suggest that figure/ground processing is mediated by top-down suppression of the ground representation in the earliest visual areas V1/V2 through a signal arising in the motion complex. We propose a model of a recurrent cortical architecture incorporating suppressive feedback that operates in a topographic manner, forming a figure/ground categorization network distinct from that for “pure” scene segmentation and thus underlying the perceptual organization of dynamic scenes into cognitively relevant components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allman J, Miezin F, McGuinness E (1985) Direction- and velocity-specific responses from beyond the classical receptive field in the middle temporal visual area (MT). Perception 14:105–126

    Article  PubMed  CAS  Google Scholar 

  • Anderson JS, Lampl I, Gillespie DC, Ferster D (2001) Membrane potential and conductance changes underlying length tuning of cells in cat primary visual cortex. J Neurosci 21:2104–2112

    PubMed  CAS  Google Scholar 

  • Angelucci A, Levitt JB, Walton EJ, Hupe JM, Bullier J, Lund JS (2002) Circuits for local and global signal integration in primary visual cortex. J Neurosci 22:8633–8646

    PubMed  CAS  Google Scholar 

  • Baek K, Sajda P (2005) Inferring figure–ground using a recurrent integrate-and-fire neural circuit. IEEE Trans Neural Syst Rehabil Eng 13:125–130

    Article  PubMed  Google Scholar 

  • Bair W, Cavanaugh JR, Smith MA, Movshon JA (2002) The timing of response onset and offset in macaque visual neurons. J Neurosci 22:3189–3205

    PubMed  CAS  Google Scholar 

  • Blake R, Lee SH (2005) The role of temporal structure in human vision. Behav Cogn Neurosci Rev 4:21–42

    Article  PubMed  Google Scholar 

  • Born RT, Bradley DC (2005) Structure and function of visual area MT. Annu Rev Neurosci 28:157–189

    Article  PubMed  CAS  Google Scholar 

  • Born RT, Tootell RBH (1991) Single-unit and 2-deoxyglucose studies of side inhibition in macaque striate cortex. Proc Natl Acad Sci USA 88:7071–7075

    Article  PubMed  CAS  Google Scholar 

  • Born RT (2000) Center–surround interactions in the middle temporal visual area of the owl monkey. J Neurophysiol 84:2658–2669

    PubMed  CAS  Google Scholar 

  • Craft E, Schutze H, Niebur E, von der Heydt R (2007) A neural model of figure–ground organization. J Neurophysiol 97:4310–4326

    Article  PubMed  Google Scholar 

  • DeAngelis GC, Freeman RD, Ohzawa I (1994) Length and width tuning of neurons in the cat’s primary visual cortex. J Neurophysiol 71:347–374

    PubMed  CAS  Google Scholar 

  • Dodd JV, Krug K, Cumming BG, Parker AJ (2001) Perceptually bistable three-dimensional figures evoke high choice probabilities in cortical area MT. J Neurosci 21(13):4809–4821

    PubMed  CAS  Google Scholar 

  • Eifuku S, Wurtz RH (1999) Response to motion in extrastriate area MSTl: disparity sensitivity. J Neurophysiol 82:2462–2475

    PubMed  CAS  Google Scholar 

  • Engel SA, Glover GH, Wandell BA (1997) Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cerebral Cortex 7:181–192

    Article  PubMed  CAS  Google Scholar 

  • Fahle M (1993) Figure–ground discrimination from temporal information. Proc Roy Soc B Biol Sci 254:199–203

    Article  CAS  Google Scholar 

  • Fitzpatrick D (2000) Seeing beyond the receptive field in primary visual cortex. Curr Opin Neurobiol 10:438–443

    Article  PubMed  CAS  Google Scholar 

  • Gerrits H, Vendrik A (1970) Simultaneous contrast, filling-in process and information processing in man’s visual system. Exp Brain Res 11:411–430

    Article  PubMed  CAS  Google Scholar 

  • Gilbert CD, Wiesel TN (1983) Clustered intrinsic connections in cat visual cortex. J Neurosci 3:1116–1133

    PubMed  CAS  Google Scholar 

  • Gilbert CD, Wiesel TN (1989) Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex. J Neurosci 9:2432–2442

    PubMed  CAS  Google Scholar 

  • Girard P, Hupé JM, Bullier J (2001) Feedforward and feedback connections between areas V1 and V2 of the monkey have similar rapid conduction velocities. J Neurophysiol 85:1328–1331

    PubMed  CAS  Google Scholar 

  • Grinvald A, Lieke EE, Frostig RD, Hildesheim R (1994) Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex. J Neurosci 14:2545–2568

    PubMed  CAS  Google Scholar 

  • Grossberg S, Mingolla E (1985) Neural dynamics of form perception: boundary completion, illusory figures, and neon color spreading. Psychol Rev 92:173–211

    Article  PubMed  CAS  Google Scholar 

  • Grossberg S (1994) 3-D vision and figure–ground separation by visual cortex. Percept Psychophys 55:48–120

    PubMed  CAS  Google Scholar 

  • Hupé J-M, James AC, Girard P, Lomber SG, Payne BR, Bullier J (2001) Feedback connections act on the early part of the responses in monkey visual cortex. J Neurophysiol 85:134–145

    PubMed  Google Scholar 

  • Hupé JM, James AC, Payne BR, Lomber SG, Girard P, Bullier J (1998) Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons. Nature 394:784–787

    Article  PubMed  Google Scholar 

  • Kandil FI, Fahle M (2001) Purely temporal figure–ground segregation. Eur J Neurosci 13:2004–2008

    Article  PubMed  CAS  Google Scholar 

  • Kandil FI, Fahle M (2003) Mechanisms of time-based figure–ground segregation. Eur J Neurosci 18:2874–2882

    Article  PubMed  Google Scholar 

  • Knierim JJ, Van Essen DC (1992) Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. J Neurophysiol 67:961–980

    PubMed  CAS  Google Scholar 

  • Krubitzer LA, Kaas JH (1990) Cortical connections of MT in four species of primates: areal, modular, and retinotopic patterns. Vis Neurosci 5:165–204

    Article  PubMed  CAS  Google Scholar 

  • Lamme VA (1995) The neurophysiology of figure–ground segregation in primary visual cortex. J Neurosci 15:1605–1615

    PubMed  CAS  Google Scholar 

  • Lamme VA, Roelfsema PR (2000) The distinct modes of vision offered by feed-forward and recurrent processing. Trends Neurosci 23:571–579

    Article  PubMed  CAS  Google Scholar 

  • Lamme VA, Zipser K, Spekreijse H (1998) Figure–ground activity in primary visual cortex is suppressed by anesthesia. Proc Natl Acad Sci USA 95:3263–3268

    Article  PubMed  CAS  Google Scholar 

  • Lamme VA, Zipser K, Spekreijse H (2002) Masking interrupts figure–ground signals in V1. J Cogn Neurosci 14:1044–1053

    Article  PubMed  Google Scholar 

  • Lee SH, Blake R (1999) Visual form created solely from temporal structure. Science 284:1165–1168

    Article  PubMed  CAS  Google Scholar 

  • Lee TS, Mumford D, Romero R, Lamme VA (1998) The role of the primary visual cortex in higher level vision. Vis Res 38:2429–2454

    Article  PubMed  CAS  Google Scholar 

  • Lu ZL, Sperling G (2001) Three-systems theory of human visual motion perception: review and update. J Opt Soc Am A 18:2331–2370

    Article  CAS  Google Scholar 

  • Maunsell JH, van Essen DC (1983) The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. J Neurosci 3:2563–2586

    PubMed  CAS  Google Scholar 

  • Mumford D (1992) On the computational architecture of the neocortex. II. The role of cortico-cortical loops. Biol Cybern 66:241–251

    Article  PubMed  CAS  Google Scholar 

  • Nothdurft H-C, Gallant JL, Van Essen DC (1999) Response modulation by texture surround in primate area V1: correlates of “popout” under anesthesia. Vis Neurosci 16:15–34

    Article  PubMed  CAS  Google Scholar 

  • Nothdurft H-C, Gallant JL, Van Essen DC (2000) Response profiles to texture border patterns in area V1. Vis Neurosci 17:421–436

    Article  PubMed  CAS  Google Scholar 

  • Olavarria JF, DeYoe EA, Knierim JJ, Fox JM, van Essen DC (1992) Neural responses to visual texture patterns in middle temporal area of the macaque monkey. J Neurophysiol 68:164–181

    PubMed  CAS  Google Scholar 

  • Palmer SE (1999) Vision science: from photons to phenomenology. Bradford Books/MIT Press, Cambridge, MA

  • Pao HK, Geiger D, Rubin N (1999) Measuring convexity for figure/ground separation. In: Proceedings of 7th international conference on computer vision, Kerkyra, Greece

  • Peterson MA, Salvagio E (under review) Context enhances effectiveness of convexity as a figural cue: evidence for biased competition in figure-ground perception

  • Press WA, Brewer AA, Dougherty RF, Wade AR, Wandell BA (2001) Visual areas and spatial summation in human visual cortex. Vis Res 41:1321–1332

    Article  PubMed  CAS  Google Scholar 

  • Rockland KS, Knutson T (2000) Feedback connections from area MT of the squirrel monkey to areas V1 and V2. J Comp Neurol 425:345–368

    Article  PubMed  CAS  Google Scholar 

  • Rockland KS, Van Hoesen GW (1994) Direct temporal-occipital feedback connections to striate cortex (V1) in the macaque monkey. Cereb Cortex 4:300–313

    Article  PubMed  CAS  Google Scholar 

  • Roelfsema PR, Lamme VA, Spekreijse H, Bosch H (2002) Figure–ground segregation in a recurrent network architecture. J Cogn Neurosci 14:525–537

    Article  PubMed  Google Scholar 

  • Rubin E (1921/2001) Visuell wahrgenommene Figuren. Copenhagen: Gyldendalske; reproduced In: Yantis S (ed) Visual perception: essential readings, vol 12. Psychology Press, Philadelphia, pp 225–229

  • Salvagio E, Mojica AJ, Peterson MA (2008) Context effects in figure-ground perception: the role of biased competition, suppression and long-range connections [Abstract]. J Vis 8(6):1007, 1007a. http://journalofvision.org/8/6/1007

    Google Scholar 

  • Schira MM, Wade AR, Tyler CW (2007) Two-dimensional mapping of the central and parafoveal visual field to human visual cortex. J Neurophysiol 97:4284–4295

    Article  PubMed  Google Scholar 

  • Shmuel A, Yacoub E, Pfeuffer J, Van de Moortele PF, Adriany G, Hu X, Ugurbil K (2002) Sustained negative BOLD, blood flow and oxygen consumption response and its coupling to the positive response in the human brain. Neuron 36:1195–1210

    Article  PubMed  CAS  Google Scholar 

  • Shmuel A, Augath M, Oeltermann A, Logothetis NK (2006) Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1. Nat Neurosci 9:569–577

    Article  PubMed  CAS  Google Scholar 

  • Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW, Brady TJ, Rosen BR, Tootell RB (1995) Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268:889–893

    Article  PubMed  CAS  Google Scholar 

  • Super H, Spekreijse H, Lamme VA (2001) Two distinct modes of sensory processing observed in monkey primary visual cortex (V1). Nat Neurosci 4:304–310

    Article  PubMed  CAS  Google Scholar 

  • Tigges J, Tigges M, Anschel S, Cross NA, Letbetter WD, McBride RL (1981) Areal and laminar distribution of neurons interconnecting the central visual cortical areas 17, 18, 19, and MT in squirrel monkey (Saimiri). J Comp Neurol 202:539–560

    Article  PubMed  CAS  Google Scholar 

  • Tsotsos JK, Culhane SM, Kei Wai WY, Lai Y, Davis N, Nuflo F (1995) Modeling visual attention via selective tuning. Artif Intell 78:507–545

    Article  Google Scholar 

  • Tsotsos JK (1997) Limited capacity of any realizable perceptual system is a sufficient reason for attentive behavior. Conscious Cogn 6:429–436

    Article  CAS  Google Scholar 

  • Tyler CW, Likova LT, Kontsevich LL, Chen CC, Schira MM, Wade AR (2005) Extended concepts of occipital retinotopy. Curr Med Imaging Rev 1:319–329

    Article  Google Scholar 

  • Tyler CW, Likova LT, Kontsevich LL, Wade AR (2006) The specificity of cortical area KO to depth structure. NeuroImage 30:228–238

    Article  PubMed  Google Scholar 

  • Ungerleider LG, Desimone R (1986) Cortical connections of visual area MT in the macaque. J Comp Neurol 248:190–222

    Article  PubMed  CAS  Google Scholar 

  • Verghese P, McKee SP (2002) Predicting future motion. J Vis 2:413–423

    Article  PubMed  Google Scholar 

  • von der Heydt R, Zhou H, Friedman HS (2003) Neural coding of border ownership: Implications for the theory of figure–ground perception. In: Behrmann M, Kimchi R, Olson CR (eds) Perceptual organization in vision: behavioral and neural perspectives. Lawrence Erlbaum Associates, Mahwah, pp 281–304

  • von der Heydt R, Macuda TJ, Qiu FT (2005) Border-ownership dependent tilt aftereffect. J Opt Soc Am (A) 22:2222–2229

    Article  Google Scholar 

  • Wertheimer M (1923/1938/1997) Laws of organization in perceptual forms. First published as Untersuchungen zur Lehre von der Gestalt II. Psycol Forschung 4:301–350. Trans in Ellis W (1938) A source book of Gestalt psychology, Routledge & Kegan Paul, London, pp 71–88. Reprint (1997) The Gestalt Journal Press, New York

  • Wertheimer M (1925) Gestalt theory. In: Ellis W (ed) Trans (1938 reprinted 1997). A source book of Gestalt psychology Routledge & Kegan Paul, London, pp 1–11. Reprint (1997) The Gestalt Journal Press, New York

  • Zhaoping L (2005) Border ownership from intracortical interactions in visual area V2. Neuron 47:143–153

    Article  PubMed  CAS  Google Scholar 

  • Zhou H, Friedman HS, von der Heydt R (2000) Coding of border ownership in monkey visual cortex. J Neurosci 20:6594–6611

    PubMed  CAS  Google Scholar 

  • Zipser K, Lamme VA, Schiller PH (1996) Contextual modulation in primary visual cortex. J Neurosci 16:7376–7389

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by National Institutes of Health/National Eye Institute Grant EY 13025. Portions of these results were presented at the Vision Science Society and at the SPIE-Human Vision and Electronic Imaging meetings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lora T. Likova.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary figures (PDF 686 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Likova, L.T., Tyler, C.W. Occipital network for figure/ground organization. Exp Brain Res 189, 257–267 (2008). https://doi.org/10.1007/s00221-008-1417-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-008-1417-6

Keywords

Navigation