Error estimates for Galerkin finite element methods for the Camassa–Holm equation | Numerische Mathematik
Skip to main content

Error estimates for Galerkin finite element methods for the Camassa–Holm equation

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We consider the Camassa–Holm (CH) equation, a nonlinear dispersive wave equation that models one-way propagation of long waves of moderately small amplitude. We discretize in space the periodic initial-value problem for CH (written in its original and in system form), using the standard Galerkin finite element method with smooth splines on a uniform mesh, and prove optimal-order \(L^{2}\)-error estimates for the semidiscrete approximation. Using the fourth-order accurate, explicit, “classical” Runge–Kutta scheme for time-stepping, we construct a highly accurate, stable, fully discrete scheme that we employ in numerical experiments to approximate solutions of CH, mainly smooth travelling waves and nonsmooth solitons of the ‘peakon’ type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Antonopoulos, D.C., Dougalis, V.A., Mitsotakis, D.: On error estimates for Galerkin finite element methods for the Camassa–Holm equation (2018). arXiv:1805.10744

  2. Artebrant, R., Schroll, H.J.: Numerical simulation of Camassa–Holm peakons by adaptive upwinding. Appl. Numer. Math. 56, 695–711 (2006)

    Article  MathSciNet  Google Scholar 

  3. Benjamin, T.B., Bona, J.L., Mahony, J.J.: Model equations for long waves in nonlinear dispersive systems. Philos. Trans. R. Soc. Lond. A 272, 47–78 (1972)

    Article  MathSciNet  Google Scholar 

  4. Bona, J.L., Dougalis, V.A., Karakashian, O.A., McKinney, W.R.: Conservative, high-order numerical schemes for the generalized Korteweg–de Vries equation. Philos. Trans. R. Soc. Lond. A 351, 107–164 (1995)

    Article  MathSciNet  Google Scholar 

  5. Bona, J.L., Pritchard, W.G., Scott, L.R.: Numerical schemes for a model for nonlinear dispersive waves. J. Comput. Phys. 60, 167–186 (1985)

    Article  MathSciNet  Google Scholar 

  6. Bressan, A., Constantin, A.: Global conservative solutions of the Camassa–Holm equation. Arch. Ration. Mech. Anal. 183, 215–239 (2007)

    Article  MathSciNet  Google Scholar 

  7. Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)

    Article  MathSciNet  Google Scholar 

  8. Camassa, R., Holm, D.D., Hyman, J.M.: A new integrable shallow water equation. Adv. Appl. Mech. 31, 1–33 (1994)

    Article  Google Scholar 

  9. Chertock, A., Liu, J.-G., Pendleton, T.: Convergence of a particle method and global weak solutions of a family of evolutionary PDEs. SIAM J. Numer. Anal. 50, 1–21 (2012)

    Article  MathSciNet  Google Scholar 

  10. Chertock, A., Liu, J.-G., Pendleton, T.: Elastic collisions among peakon solutions for the Camassa–Holm equation. Appl. Numer. Math. 93, 30–46 (2015)

    Article  MathSciNet  Google Scholar 

  11. Coclite, G.M., Karlsen, K.H., Risebro, N.H.: A convergent finite difference scheme for the Camassa–Holm equation with general \(H^{1}\) initial data. SIAM J. Numer. Anal. 46, 1554–1579 (2008)

    Article  MathSciNet  Google Scholar 

  12. Constanin, A., Lenells, J.: On the inverse scattering approach to the Camassa–Holm equation. J. Nonlinear Math. Phys. 10, 252–255 (2003)

    Article  MathSciNet  Google Scholar 

  13. Constantin, A.: On the Cauchy problem for the periodic Camassa–Holm equation. J. Differ. Equ. 141, 218–235 (1997)

    Article  MathSciNet  Google Scholar 

  14. Constantin, A.: On the scattering problem for the Camassa–Holm equation. Proc. R. Soc. Lond. A 457, 953–970 (2001)

    Article  MathSciNet  Google Scholar 

  15. Constantin, A., Escher, J.: Global existence and blow-up for a shallow water equation. Ann. Sc. Norm. Super. Pisa 26, 303–328 (1998)

    MathSciNet  MATH  Google Scholar 

  16. Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, 229–243 (1998)

    Article  MathSciNet  Google Scholar 

  17. Constantin, A., Lannes, D.: The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations. Arch. Ration. Mech. Anal. 192, 165–186 (2009)

    Article  MathSciNet  Google Scholar 

  18. Constantin, A., Molinet, L.: Orbital stability of solitary waves for a shallow water equation. Physica D 57, 75–89 (2001)

    Article  MathSciNet  Google Scholar 

  19. Constantin, A., Strauss, W.: Stability of peakons. Commun. Pure Appl. Math. 53, 603–610 (2000)

    Article  MathSciNet  Google Scholar 

  20. Constantin, A., Strauss, W.: Stability of the Camassa–Holm solitons. J. Nonlinear Sci. 12, 415–422 (2002)

    Article  MathSciNet  Google Scholar 

  21. Escher, J., Yin, Z.: Initial boundary value problems of the Camassa–Holm equation. Commun. Partial Differ. Equ. 33, 377–395 (2008)

    Article  MathSciNet  Google Scholar 

  22. Fokas, A.S.: On a class of physically important integrable equations. Physica D 87, 145–150 (1995)

    Article  MathSciNet  Google Scholar 

  23. Fuchssteiner, B.: Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa–Holm equation. Physica D 95, 229–243 (1996)

    Article  MathSciNet  Google Scholar 

  24. Fuchssteiner, B., Fokas, A.S.: Symplectic structures, their Bäcklund tranformations and hereditary symmetries. Physica D 4, 47–66 (1981)

    Article  MathSciNet  Google Scholar 

  25. Holden, H., Raynaud, X.: A convergent numerical scheme for the Camassa–Holm equation based on multipeakons. Discrete Contin. Dyn. Syst. 14, 505–523 (2006)

    MathSciNet  MATH  Google Scholar 

  26. Holden, H., Raynaud, X.: Convergence of a finite difference scheme for the Camassa–Holm equation. SIAM J. Numer. Anal. 44, 1655–1680 (2006)

    Article  MathSciNet  Google Scholar 

  27. Johnson, R.S.: Camassa–Holm, Korteweg–de Vries and related models for water waves. J. Fluid Mech. 455, 63–82 (2002)

    Article  MathSciNet  Google Scholar 

  28. Johnson, R.S.: On solutions of the Camassa–Holm equation. Proc. R. Soc. Lond. A 459, 1687–1708 (2003)

    Article  MathSciNet  Google Scholar 

  29. Kalisch, H., Lenells, J.: Numerical study of traveling-wave solutions for the Camassa–Holm equation. Chaos Solitons Fractals 25, 287–298 (2005)

    Article  MathSciNet  Google Scholar 

  30. Kalisch, H., Raynaud, X.: Convergence of a spectral projection of the Camassa–Holm equation. Numer. Methods Partial Differ. Equ. 22, 1197–1215 (2006)

    Article  MathSciNet  Google Scholar 

  31. Kwek, K.H., Gao, H., Zhang, W., Qu, C.: An initial boundary value problem of Camassa–Holm equation. J. Math. Phys. 41, 8279–8285 (2000)

    Article  MathSciNet  Google Scholar 

  32. Lenells, J.: Traveling wave solutions of the Camassa–Holm equation. J. Differ. Equ. 217, 393–430 (2005)

    Article  MathSciNet  Google Scholar 

  33. Li, Y.A., Olver, P.J.: Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation. J. Differ. Equ. 162, 27–63 (2000)

    Article  MathSciNet  Google Scholar 

  34. Liu, H., Xing, Y.: An invariant preserving discontinuous Galerkin method for the Camassa–Holm Equation. SIAM J. Sci. Comput. 38, A1919–A1934 (2016)

    Article  MathSciNet  Google Scholar 

  35. Molinet, L.: On well-posedness results for Camassa–Holm equation on the line: a survey. J. Nonlinear Math. Phys. 11, 521–533 (2004)

    Article  MathSciNet  Google Scholar 

  36. Parker, A.: On the Camassa–Holm equation and a direct method of solution I. Bilinear form and solitary waves. Proc. R. Soc. Lond. A 460, 2929–2957 (2004)

    Article  MathSciNet  Google Scholar 

  37. Parker, A.: On the Camassa–Holm equation and a direct method of solution. II. Soliton solutions. Proc. R. Soc. Lond. A 461, 3611–3632 (2005)

    Article  MathSciNet  Google Scholar 

  38. Parker, A.: On the Camassa–Holm equation and a direct method of solution. III. N-soliton solutions. Proc. R. Soc. Lond. A 461, 3893–3911 (2005)

    Article  MathSciNet  Google Scholar 

  39. Parker, A.: Wave dynamics for peaked solitons of the Camassa–Holm equation. Chaos Solitons Fractals 35, 220–237 (2008)

    Article  MathSciNet  Google Scholar 

  40. Thomée, V., Wendroff, B.: Convergence estimates for Galerkin methods for variable coefficient initial value problems. SIAM J. Numer. Anal. 11, 1059–1068 (1974)

    Article  MathSciNet  Google Scholar 

  41. Xu, Y., Shu, C.-W.: A local discontinuous Galerkin method for the Camassa–Holm equation. SIAM J. Numer. Anal. 46, 1998–2021 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

V.A.D. and D.E.M. acknowledge travel support by grant MTM2014-54710 of the Ministerió de Economia y Competividad, Spain. D.E.M. was supported by the Marsden Fund administered by the Royal Society of New Zealand with Contract Number VUW1418.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Dougalis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonopoulos, D.C., Dougalis, V.A. & Mitsotakis, D.E. Error estimates for Galerkin finite element methods for the Camassa–Holm equation. Numer. Math. 142, 833–862 (2019). https://doi.org/10.1007/s00211-019-01045-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-019-01045-7

Mathematics Subject Classification