Abstract
We consider the Camassa–Holm (CH) equation, a nonlinear dispersive wave equation that models one-way propagation of long waves of moderately small amplitude. We discretize in space the periodic initial-value problem for CH (written in its original and in system form), using the standard Galerkin finite element method with smooth splines on a uniform mesh, and prove optimal-order \(L^{2}\)-error estimates for the semidiscrete approximation. Using the fourth-order accurate, explicit, “classical” Runge–Kutta scheme for time-stepping, we construct a highly accurate, stable, fully discrete scheme that we employ in numerical experiments to approximate solutions of CH, mainly smooth travelling waves and nonsmooth solitons of the ‘peakon’ type.
Similar content being viewed by others
References
Antonopoulos, D.C., Dougalis, V.A., Mitsotakis, D.: On error estimates for Galerkin finite element methods for the Camassa–Holm equation (2018). arXiv:1805.10744
Artebrant, R., Schroll, H.J.: Numerical simulation of Camassa–Holm peakons by adaptive upwinding. Appl. Numer. Math. 56, 695–711 (2006)
Benjamin, T.B., Bona, J.L., Mahony, J.J.: Model equations for long waves in nonlinear dispersive systems. Philos. Trans. R. Soc. Lond. A 272, 47–78 (1972)
Bona, J.L., Dougalis, V.A., Karakashian, O.A., McKinney, W.R.: Conservative, high-order numerical schemes for the generalized Korteweg–de Vries equation. Philos. Trans. R. Soc. Lond. A 351, 107–164 (1995)
Bona, J.L., Pritchard, W.G., Scott, L.R.: Numerical schemes for a model for nonlinear dispersive waves. J. Comput. Phys. 60, 167–186 (1985)
Bressan, A., Constantin, A.: Global conservative solutions of the Camassa–Holm equation. Arch. Ration. Mech. Anal. 183, 215–239 (2007)
Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)
Camassa, R., Holm, D.D., Hyman, J.M.: A new integrable shallow water equation. Adv. Appl. Mech. 31, 1–33 (1994)
Chertock, A., Liu, J.-G., Pendleton, T.: Convergence of a particle method and global weak solutions of a family of evolutionary PDEs. SIAM J. Numer. Anal. 50, 1–21 (2012)
Chertock, A., Liu, J.-G., Pendleton, T.: Elastic collisions among peakon solutions for the Camassa–Holm equation. Appl. Numer. Math. 93, 30–46 (2015)
Coclite, G.M., Karlsen, K.H., Risebro, N.H.: A convergent finite difference scheme for the Camassa–Holm equation with general \(H^{1}\) initial data. SIAM J. Numer. Anal. 46, 1554–1579 (2008)
Constanin, A., Lenells, J.: On the inverse scattering approach to the Camassa–Holm equation. J. Nonlinear Math. Phys. 10, 252–255 (2003)
Constantin, A.: On the Cauchy problem for the periodic Camassa–Holm equation. J. Differ. Equ. 141, 218–235 (1997)
Constantin, A.: On the scattering problem for the Camassa–Holm equation. Proc. R. Soc. Lond. A 457, 953–970 (2001)
Constantin, A., Escher, J.: Global existence and blow-up for a shallow water equation. Ann. Sc. Norm. Super. Pisa 26, 303–328 (1998)
Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, 229–243 (1998)
Constantin, A., Lannes, D.: The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations. Arch. Ration. Mech. Anal. 192, 165–186 (2009)
Constantin, A., Molinet, L.: Orbital stability of solitary waves for a shallow water equation. Physica D 57, 75–89 (2001)
Constantin, A., Strauss, W.: Stability of peakons. Commun. Pure Appl. Math. 53, 603–610 (2000)
Constantin, A., Strauss, W.: Stability of the Camassa–Holm solitons. J. Nonlinear Sci. 12, 415–422 (2002)
Escher, J., Yin, Z.: Initial boundary value problems of the Camassa–Holm equation. Commun. Partial Differ. Equ. 33, 377–395 (2008)
Fokas, A.S.: On a class of physically important integrable equations. Physica D 87, 145–150 (1995)
Fuchssteiner, B.: Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa–Holm equation. Physica D 95, 229–243 (1996)
Fuchssteiner, B., Fokas, A.S.: Symplectic structures, their Bäcklund tranformations and hereditary symmetries. Physica D 4, 47–66 (1981)
Holden, H., Raynaud, X.: A convergent numerical scheme for the Camassa–Holm equation based on multipeakons. Discrete Contin. Dyn. Syst. 14, 505–523 (2006)
Holden, H., Raynaud, X.: Convergence of a finite difference scheme for the Camassa–Holm equation. SIAM J. Numer. Anal. 44, 1655–1680 (2006)
Johnson, R.S.: Camassa–Holm, Korteweg–de Vries and related models for water waves. J. Fluid Mech. 455, 63–82 (2002)
Johnson, R.S.: On solutions of the Camassa–Holm equation. Proc. R. Soc. Lond. A 459, 1687–1708 (2003)
Kalisch, H., Lenells, J.: Numerical study of traveling-wave solutions for the Camassa–Holm equation. Chaos Solitons Fractals 25, 287–298 (2005)
Kalisch, H., Raynaud, X.: Convergence of a spectral projection of the Camassa–Holm equation. Numer. Methods Partial Differ. Equ. 22, 1197–1215 (2006)
Kwek, K.H., Gao, H., Zhang, W., Qu, C.: An initial boundary value problem of Camassa–Holm equation. J. Math. Phys. 41, 8279–8285 (2000)
Lenells, J.: Traveling wave solutions of the Camassa–Holm equation. J. Differ. Equ. 217, 393–430 (2005)
Li, Y.A., Olver, P.J.: Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation. J. Differ. Equ. 162, 27–63 (2000)
Liu, H., Xing, Y.: An invariant preserving discontinuous Galerkin method for the Camassa–Holm Equation. SIAM J. Sci. Comput. 38, A1919–A1934 (2016)
Molinet, L.: On well-posedness results for Camassa–Holm equation on the line: a survey. J. Nonlinear Math. Phys. 11, 521–533 (2004)
Parker, A.: On the Camassa–Holm equation and a direct method of solution I. Bilinear form and solitary waves. Proc. R. Soc. Lond. A 460, 2929–2957 (2004)
Parker, A.: On the Camassa–Holm equation and a direct method of solution. II. Soliton solutions. Proc. R. Soc. Lond. A 461, 3611–3632 (2005)
Parker, A.: On the Camassa–Holm equation and a direct method of solution. III. N-soliton solutions. Proc. R. Soc. Lond. A 461, 3893–3911 (2005)
Parker, A.: Wave dynamics for peaked solitons of the Camassa–Holm equation. Chaos Solitons Fractals 35, 220–237 (2008)
Thomée, V., Wendroff, B.: Convergence estimates for Galerkin methods for variable coefficient initial value problems. SIAM J. Numer. Anal. 11, 1059–1068 (1974)
Xu, Y., Shu, C.-W.: A local discontinuous Galerkin method for the Camassa–Holm equation. SIAM J. Numer. Anal. 46, 1998–2021 (2008)
Acknowledgements
V.A.D. and D.E.M. acknowledge travel support by grant MTM2014-54710 of the Ministerió de Economia y Competividad, Spain. D.E.M. was supported by the Marsden Fund administered by the Royal Society of New Zealand with Contract Number VUW1418.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Antonopoulos, D.C., Dougalis, V.A. & Mitsotakis, D.E. Error estimates for Galerkin finite element methods for the Camassa–Holm equation. Numer. Math. 142, 833–862 (2019). https://doi.org/10.1007/s00211-019-01045-7
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-019-01045-7