Abstract
The article focuses on adaptive finite element methods for frictional contact problems. The approach is based on a reformulation of the mixed form of the underlying Signorini problem with friction as a nonlinear variational equation using nonlinear complimentarity functions. The usual dual weighted residual framework for a posteriori error estimation is applied. However, we have to take into account the nonsmoothness of the problem formulation. Error identities for measuring the discretization as well as the model error with respect to a model hierarchy of friction laws are derived and a method for the numerical evaluation of them is proposed. The estimates are utilized in an adaptive framework, which balances the discretization and the model error. Several numerical examples substantiate the accuracy of the proposed estimates and the efficiency of the adaptive method.











Similar content being viewed by others
References
Actis, R.L., Szabo, B.A., Schwab, C.: Hierarchic models for laminated plates and shells. Comp. Methods Appl. Mech. Engrg. 172, 79–107 (1999)
Ainsworth, M., Oden, J., Lee, C.: Local a posteriori error estimators for variational inequalities. Numer. Methods Partial Differ. Equ. 9, 23–33 (1993)
Bangerth, W., Rannacher, R.: Adaptive finite element methods for differential equations. Lectures in Mathematics, ETH Zürich. Birkhäuser, Basel (2003)
Bartels, S., Carstensen, C.: Averaging techniques yield reliable a posteriori finite element error control for obstacle problems. Numer. Math. 99(2), 225–249 (2004)
Becker, R., Rannacher, R.: An optimal control approach to a posteriori error estimation in finite element methods. Acta Numerica 10, 1–102 (2001)
Betten, J.: Bemerkungen zum Versuch von Hohenemser. ZAMM 55, 149–158 (75)
Beyer, F., Blum, H., Kumor, D., Rademacher, A., Willner, K., Schneider, T.: Experimental and simulative investigations of tribology in sheet-bulk-metal-forming. Key Engrg. Mat. 639, 283–290 (2015)
Billade, N., Vemaganti, K.: Hierarchical models of thin elastic structures: Overview and recent adcances in error estimation and adaptivity. Comp. Methods Appl. Mech. Engrg. 196, 3508–3523 (2007)
Blum, H., Braess, D., Suttmeier, F.T.: A cascadic multigrid algorithm for variational inequalities. Comput. Vis. Sci. 7(3–4), 153–157 (2004)
Blum, H., Frohne, H., Frohne, J., Rademacher, A.: Semi-smooth Newton methods for mixed FEM discretizations of higher-order for frictional, elasto-plastic two-body contact problems. Comput. Method. Appl. Mech. Eng. 309, 131–151 (2016)
Blum, H., Schroeder, A., Suttmeier, F.: A posteriori estimates for FE-solutions of variational inequalities. In: F. Brezzi, et al. (eds.) Numerical mathematics and advanced applications. Proceedings of ENUMATH 2001, the 4th European conference, Ischia, July 2001, pp. 669–680. Springer, Berlin (2003)
Blum, H., Suttmeier, F.T.: An adaptive finite element discretisation for a simplified Signorini problem. Calcolo 37(2), 65–77 (2000)
Bohinc, U.: Adaptive analysis of plate structures. Ph.D. thesis, L’Ecole Normale Supérieure de Cachan (2011)
Bowden, F.P., Tabor, T.: The Friction and Lubrication of Solids. Clarendon Press, Oxford (2001)
Braack, M., Ern, A.: A posteriori control of modeling errors and discretization errors. Multiscale Model. Simul. 1(2), 221–238 (2003)
Braack, M., Taschenberger, N.: A posteriori control of modeling and discretization errors for quasi periodic solutions. J. Numer. Math. 22(2), 87–108 (2014)
Braess, D.: A posteriori error estimators for obstacle problems - another look. Numer. Math. 101(3), 415–421 (2005)
Braess, D., Carstensen, C., Hoppe, R.: Error reduction in adaptive finite element approximations of elliptic obstacle proplems. J. Comput. Math. 27, 148–169 (2009)
Braess, D., Carstensen, C., Hoppe, R.H.: Convergence analysis of a conforming adaptive finite element method for an obstacle problem. Numer. Math. 107(3), 455–471 (2007)
Chen, Z., Nochetto, R.H.: Residual type a posteriori error estimates for elliptic obstacle problems. Numer. Math. 84(4), 527–548 (2000)
Dörsek, P., Melenk, J.: Adaptive hp-FEM for the contact problem with Tresca friction in linear elasticity: The primal-dual formulation and a posteriori error estimation. Appl. Numer. Math. 60(7), 689–704 (2010)
Duvaut, G., Lions, J.L.: Inequalities in Mechanics and Physics. Grundlehren der mathematischen Wissenschaften. Springer, Berlin (1976)
Eck, C., Jarusek, J., Krbec, M.: Unilateral Contact Problems: Variational Methods and Existence Theorems. CRC Press, Boca Raton (2005)
Frohne, H.: Finite Elemente Methoden höherer Ordnung für reibungsbehaftete, elasto-plastische Mehrkörperkontaktprobleme - Fehlerkontrolle, adaptive Methoden und effiziente Lösungsverfahren. Ph.D. thesis, Technische Universität Dortmund (2018)
Große-Wöhrmann, A., Blum, H., Stiemer, M.: A posteriori control of modelling errors in linear elasticity. Proc. Appl. Math. Mech. 10, 647–648 (2010)
Haslinger, J.: Mixed formulation of elliptic variational inequalities and its approximation. Appl. Math. 26, 462–475 (1981)
Haslinger, J., Dostál, Z., Kučera, R.: On a splitting type algorithm for the numerical realization of contact problems with coulomb friction. Comput. Methods Appl. Mech. Eng. 191(21–22), 2261–2281 (2002)
Haslinger, J., Sassi, T.: Mixed finite element approximation of 3D contact problems with given friction: error analysis and numerical realization. Math. Mod. Numer. Anal. 38, 563–578 (2004)
Hauer, F.: Die elasto-plastische Einglättung rauer Oberflächen und ihr Einfluss auf die Reibung in der Umformtechnik. Ph.D. thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg (2014)
Hild, P., Nicaise, S.: A posteriori error estimations of residual type for Signorini’s problem. Numer. Math. 101(3), 523–549 (2005)
Hintermüller, M., Ito, K., Kunisch, K.: The primal-dual active set strategy as a semi-smooth newton method. SIAM J. Optim. 13(3), 865–888 (2003)
Hoppe, R., Kornhuber, R.: Adaptive multilevel methods for obstacle problems. SIAM J. Numer. Anal. 31, 301–323 (1994)
Hüeber, S.: Discretization techniques and efficient algorithms for contact problems. Ph.D. thesis, Universität Stuttgart (2008)
Hüeber, S., Mair, M., Wohlmuth, B.: A priori error estimates and an inexact primal-dual active set strategy for linear and quadratic finite elements applied to multibody contact problems. Appl. Numer. Math. 54(3–4), 555–576 (2005)
Johnson, C.: Adaptive finite element methods for the obstacle problem. Math. Models Meth. Appl. Sci. 2, 483–487 (1992)
Johnson, K.: Contact Mechanics. Cambridge University Press, Cambridge (1985)
Kikuchi, N., Oden, J.: Contact problems in elasticity: A study of variational inequalities and finite element methods. SIAM Studies in Applied Mathematics. SIAM, Society for Industrial and Applied Mathematics, Philadelphia (1988)
Kleemann, H.: Adaptive FEM für Mehrkörperkontaktprobleme. Ph.D. thesis, Technische Universität Dortmund (2011)
Kornhuber, R., Krause, R.: Adaptive multigrid methods for Signorini’s problem in linear elasticity. Comput. Vis. Sci. 4(1), 9–20 (2001)
Krause, R., Veeser, A., Walloth, M.: An efficient and reliable residual-type a posteriori error estimator for the Signorini problem. Numer. Math. 130, 151–197 (2015)
Mirabella, L., Nobile, F., Veneziani, A.: An a posteriori error estimator for model adaptivity in electrocardiology. Comp. Methods Appl. Mech. Eng. 200, 2727–2737 (2011)
Nochetto, R., Siebert, K., Veeser, A.: Pointwise a posteriori error control for elliptic obstacle problems. Numer. Math. 95, 163–195 (2003)
Oden, J.T., Vemaganti, K.: Estimation of local modeling error and goal-oriented modeling of heterogeneous materials; Part I: Error estimates and adaptive algorithms. J. Comput. Phys. 164, 22–47 (2000)
Oden, J.T., Vemaganti, K.: Estimation of local modeling error and goal-oriented modeling of heterogeneous materials; Part II: A computational environment for adaptive modeling of heterogeneous elastic solids. Comput. Methods Appl. Mech. Eng. 190, 3–25 (2001)
Paraschivoiu, M., Peraire, J., Patera, A.T.: A posteriori finite element bounds for linear-functional outputs of elliptic partial differential equations. Comput. Methods Appl. Mech. Eng. 150(1–4), 289–312 (1997)
Prudhomme, S., Oden, J.: On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors. Comput. Methods Appl. Mech. Eng. 176(1–4), 313–331 (1999)
Rademacher, A.: NCP function-based dual weighted residual error estimators for Signorini’s problem. SIAM J. Sci. Comput. 38, A1743–A1769 (2016)
Rademacher, A., Schröder, A.: Dual weighted residual error control for frictional contact problems. Comput. Methods Appl. Math. 15, 391–413 (2015)
Richter, T., Wick, T.: Variational localizations of the dual-weighted residual estimator. J. Comput. Appl. Math. 279, 192–208 (2015)
Schmaltz, S., Landkammer, P., Beyer, F., Kumor, D., Rademacher, A., Blum, H., Steinmann, P., Willner, K.: Vorstellung eines simulationsbenchmarks für die blechmassivumformung. In: M. Merklein, B.A. Behrens, A.E. Tekkaya (eds.) 2. Workshop Blechmassivumformung, pp. 53–68. Meisenbach, Bamberg (2013)
Schröder, A.: Error control in h- and hp-adaptive FEM for Signorini’s Problem. J. Numer. Math. 17(4), 299–318 (2009)
Schröder, A., Blum, H., Rademacher, A., Kleemann, H.: Mixed FEM of higher order for contact Problems with friction. Int. J. Numer. Anal. Model. 8(2), 302–323 (2011)
Schröder, A., Rademacher, A.: Goal-oriented error control in adaptive mixed FEM for Signorini’s Problem. Comput. Methods Appl. Mech. Eng. 200(1–4), 345–355 (2011)
Shaw, M.C.: The role of friction in deformation processing. Wear 6, 140–158 (1963)
Siebert, K., Veeser, A.: A unilaterally constrained quadratic minimization with adaptive finite elements. SIAM J. Optim. 18, 260–289 (2007)
Stein, E., Ohnimus, S.: Anisotropic discretization- and model-error estimation in solid mechanics by local neumann problems. Comput. Methods Appl. Mech. Eng. 176, 363–385 (1999)
Stein, E., Rüter, M., Ohnimus, S.: Implicit upper bound error estimates for combined expansive model and discretization adaptivity. Comput. Methods Appl. Mech. Eng. 200, 2626–2638 (2011)
Suttmeier, F.: Numerical Solution of Variational Inequalities by Adaptive Finite Elements. Advances in Numerical Mathematics. Vieweg-Teubner, Wiesbaden (2008)
Veeser, A.: Efficient and reliable a posteriori error estimators for elliptic obstacle problems. SIAM J. Numer. Anal. 39, 146–167 (2001)
Walloth, M.: Adaptive numerical simulation of contact problems: Resolving local effects at the contact boundary in space and time. Ph.D. thesis, Rheinischen Friedrich-Wilhelms-Universität Bonn (2012)
Weiss, A., Wohlmuth, B.I.: A posteriori error estimator and error control for contact problems. Math. Comp. 78(267), 1237–1267 (2009)
Wohlmuth, B.I.: An a posteriori error estimator for two-body contact problems on non-matching meshes. J. Sci. Comput. 33(1), 25–45 (2007)
Wohlmuth, B.I.: Variationally consistent discretization schemes and numerical algorithms for contact problems. Acta Numerica 20, 569–734 (2011)
Wohlmuth, B.I., Krause, R.H.: Monotone multigrid methods on nonmatching grids for nonlinear multibody contact problems. SIAM J. Sci. Comput. 25(1), 324–347 (2003)
Wriggers, P.: Computational Contact Mechanics. Wiley, Chichester (2002)
Wriggers, P.: Nonlinear Finite Element Methods. Springer, Berlin Heidelberg (2008)
Acknowledgements
The author gratefully acknowledges the financial support by the German Research Foundation (DFG) within the subproject A5 of the transregional collaborative research centre (Transregio) 73 “Sheet-Bulk-Metal-Forming”.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Rademacher, A. Mesh and model adaptivity for frictional contact problems. Numer. Math. 142, 465–523 (2019). https://doi.org/10.1007/s00211-019-01044-8
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-019-01044-8