Convergence analysis of high-order time-splitting pseudo-spectral methods for rotational Gross–Pitaevskii equations | Numerische Mathematik
Skip to main content

Convergence analysis of high-order time-splitting pseudo-spectral methods for rotational Gross–Pitaevskii equations

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

A convergence analysis of time-splitting pseudo-spectral methods adapted for time-dependent Gross–Pitaevskii equations with additional rotation term is given. For the time integration high-order exponential operator splitting methods are studied, and the space discretization relies on the generalized-Laguerre–Fourier spectral method with respect to the \((x,y)\)-variables as well as the Hermite spectral method in the \(z\)-direction. Essential ingredients in the stability and error analysis are a general functional analytic framework of abstract nonlinear evolution equations, fractional power spaces defined by the principal linear part, a Sobolev-type inequality in a curved rectangle, and results on the asymptotical distribution of the nodes and weights associated with Gauß–Laguerre quadrature. The obtained global error estimate ensures that the nonstiff convergence order of the time integrator and the spectral accuracy of the spatial discretization are retained, provided that the problem data satisfy suitable regularity requirements. A numerical example confirms the theoretical convergence estimate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions: with formulas, graphs, and mathematical tables. Dover Publications, New York (1992) (Reprint of the 1972 edition)

  2. Adams, R.A.: Sobolev Spaces. Academic Press, Orlando (1975)

    MATH  Google Scholar 

  3. Bao, W., Cai, Y.: Mathematical theory and numerical methods for Bose–Einstein condensation. Kinet. Relat. Mod. 6, 1–135 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bao, W., Li, H., Shen, J.: A generalized-Laguerre–Fourier–Hermite pseudospectral method for computing the dynamics of rotating Bose–Einstein condensates. SIAM J. Sci. Comput. 31(5), 3685–3711 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bao, W., Shen, J.: A fourth-order time-splitting Laguerre-Hermite pseudospectral method for Bose–Einstein condensates. SIAM J. Sci. Comput. 26(6), 2010–2028 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Blanes, S., Moan, P.C.: Practical symplectic partitioned Runge-Kutta and Runge-Kutta-Nyström methods. J. Comput. Appl. Math. 142, 313–330 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Caliari, M., Neuhauser, Ch., Thalhammer, M.: High-order time-splitting Hermite and Fourier spectral methods for the Gross-Pitaevskii equation. J. Comput. Phys. 228, 822–832 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Danaila, I., Hecht, F.: A finite element method with mesh adaptivity for computing vortex states in fast-rotating Bose–Einstein condensates. J. Comput. Phys. 229, 6946–6960 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Danaila, I., Kazemi, P.: A new Sobolev gradient method for direct minimization of the Gross-Pitaevskii energy with rotation. SIAM J. Sci. Comput. 32, 2447–2467 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gauckler, L.: Convergence of a split-step Hermite method for the Gross–Pitaevskii equation. IMA J. Numer. Anal. 31, 396–415 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gautschi, W.: Orthogonal Polynomials: Computation and Approximation. Oxford University Press, Oxford (2004)

    Google Scholar 

  12. Guo, B., Shen, J., Xu, Ch.: Spectral and pseudospectral approximations using Hermite functions: application to the Dirac equation. Adv. Comput. Math. 19, 35–55 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Koch, O., Neuhauser, Ch., Thalhammer, M.: Error analysis of high-order splitting methods for nonlinear evolutionary Schrödinger equations and application to the MCTDHF equations in electron dynamics. M2AN Math. Model. Numer. Anal. 2012

  14. Levin, E., Lubinsky, D.: Orthogonal polynomials for exponential weights \(x^{2\rho }e^{-2Q(x)}\) on \([0, d)\). J. Approx. Theory 134(2), 199–256 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Levin, E., Lubinsky, D.: Orthogonal polynomials for exponential weights \(x^{2\rho }e^{-2Q(x)}\) on \([0, d)\). II. J. Approx. Theory 139(1–2), 107–143 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lubich, C.: On splitting methods for Schrödinger–Poisson and cubic nonlinear Schrödinger equations. Math. Comput. 77, 2141–2153 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  18. Remmert, R.: Theory of Complex Functions. Springer, New York (1991)

    Book  MATH  Google Scholar 

  19. Shen, J., Tang, T., Wang, L.: Spectral Methods: Algorithms. Analysis and Applications. Springer, Berlin (2011)

    Book  Google Scholar 

  20. Thalhammer, M.: High-order exponential operator splitting methods for time-dependent Schrödinger equations. SIAM J. Numer. Anal. 46(4), 2022–2038 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Thalhammer, M.: Convergence analysis of high-order time-splitting pseudo-spectral methods for nonlinear Schrödinger equations. SIAM J. Numer. Anal. 50, 3231–3258 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  22. Triebel, H.: Higher Analysis. Barth, Leipzig (1992)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Hofstätter.

Additional information

We acknowledge financial support by the Austrian Science Fund (FWF) under the projects P21620-N13 and P24157-N13.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofstätter, H., Koch, O. & Thalhammer, M. Convergence analysis of high-order time-splitting pseudo-spectral methods for rotational Gross–Pitaevskii equations. Numer. Math. 127, 315–364 (2014). https://doi.org/10.1007/s00211-013-0586-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-013-0586-9

Mathematics Subject Classification (2000)