Abstract
The molecule solution of an extended discrete Lotka–Volterra equation is constructed, from which a new sequence transformation is proposed. A convergence acceleration algorithm for implementing this sequence transformation is found. It is shown that our new sequence transformation accelerates some kinds of linearly convergent sequences and factorially convergent sequences with good numerical stability. Some numerical examples are also presented.
Similar content being viewed by others
References
Aitken, A.C.: On Bernoullis numerical solution of algebraic equations. Proc. R. Soc. Edinb. 46, 289–305 (1926)
Aitken, A.C.: Determinants and Matrices. Oliver and Boyd, Edinburgh (1959)
Almkvist, G., Berndt, B.: Gauss, Landen, Ramanujan, the arithmetic-geometric mean, ellipses, \(\pi \), and the ladies diary. Am. Math. Mon. 95, 585–608 (1988)
Babelon, O., Bernard, D., Talon, M.: Introduction to classical integrable systems. Cambridge University Press, Cambridge (2003)
Baker, G.A., Graves-Morris, P.R.: Padé Approximants. Cambridge University Press, Cambridge (1996)
Borwein, J.M., Borwein, P.B.: The arithmetic–geometric mean and fast computation of elementary functions. SIAM Rev. 26, 351–366 (1984)
Bourbaki, N.: Éléments de mathématique. Fonctions d’une variable réelle (1961)
Brezinski, C.: Conditions d’application et de convergence de proc d’ s d’ extrapolation. Numer. Math. 20, 64–79 (1972)
Brezinski, C.: Padé-type Approximation and General Orthogonal Polynomials. Birkhä user Verlag, Basel (1980)
Brezinski, C.: A Bibliography on Continued Fractions, Padé Approximation. Sequence Transformation and Related Subjects. Prensas Universitarias de Zaragoza, Zaragoza (1991)
Brezinski, C.: Extrapolation algorithms and Padé approximations: A historical survey. Appl. Numer. Math. 20, 299–318 (1996)
Brezinski, C.: Convergence acceleration during the 20th century. J. Comput. Appl. Math. 122, 1–21 (2000)
Brezinski, C., He, Y., Hu, X.B., Redivo-Zaglia, M., Sun, J.Q.: Multistep \(\varepsilon \)-algorithm, Shanks’ transformation, and Lotka–Volterra system by Hirota’s method. Math. Comput. 81, 1527–1549 (2012)
Brezinski, C., Redivo Zaglia, M.: Extrapolation Methods. Theory and Practice. North-Holland, Amsterdam (1991)
Brualdi, R.A., Schneider, H.: Determinantal identities: Gauss, Schur, Cauchy, Sylvester, Kronecker, Jacobi, Binet, Laplace, Muir, and Cayley. Linear Algebra Appl. 52/53, 769–791 (1983)
Carstensen, C.: On a general epsilon algorithm. In: Ames, W.F., Brezinski, C. (eds.) Numerical and Applied Mathematics, Part II (Paris, 1988), pp. 437–441. IMACS Ann. Comput. Appl. Math., 1.2. Baltzer, Basel (1989)
Chu, M.T.: Linear algebra algorithms as dynamical systems. Acta Numer. 17, 1–86 (2008)
Garibotti, C.R., Grinstein, F.F.: Recent results relevant to the evaluation of infinite series. J. Comput. Appl. Math. 9, 193–200 (1983)
He, Y., Hu, X.B., Sun, J.Q., Weniger, E.J.: Convergence acceleration algorithm via an equation related to the lattice Boussinesq equation. SIAM J. Sci. Comput. 33, 1234–1245 (2011)
He, Y., Hu, X.B., Tam, H.W.: A q-difference version of the \(\varepsilon \)-algorithm. J. Phys. A 42, 5202–5210 (2009)
Henrici, P.: The quotient-difference algorithm. In: National Bureau of Standards (ed.) Further Contributions to the Solution of Simultaneous Linear Equations and the Determination of Eigenvalues, Volume 49 of Applied Mathematics Series, pp. 23–46. US Government Printing Office (1958)
Hirota, R.: Nonlinear partial difference equations. II. Discrete-time Toda equation. J. Phys. Soc. Japan 43, 2074–2078 (1977)
Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge(2004) (Translated by Nagai, A., Nimmo, J. and Gilson, C.)
Hu, X.B., Bullough, R.K.: Backlund transformation and nonlinear superposition formula of an extended Lotka–Volterra equation. J. Phys. A 30, 3635–3641 (1997)
Iwasaki, M., Nakamura, Y.: On the convergence of a solution of the discrete Lotka–Volterra system. Inverse Probl. 18, 1569–1578 (2002)
Iwasaki, M., Nakamura, Y.: An application of the discrete Lotka–Volterra system with variable step-size to singular value computation. Inverse Probl. 20, 553–563 (2004)
Jordan, C.: Calculus of Finite Differences. Chelsea Pub Co, New York (1965)
Nagai, A., Satsuma, J.: Satsuma Discrete soliton equations and convergence acceleration algorithms. Phys. Lett. A 209, 305–312 (1995)
Nagai, A., Tokihiro, T., Satsuma, J.: The Toda molecule equation and the \(\varepsilon \)-algorithm. Math. Comput. 67, 1565–1575 (1998)
Nakamura, Y. (ed.): Shokabo, Applied Integrable Systems. Tokyo (2000) (in Japanese)
Nakamura, Y.: Algorithms associated with arithmetic, geometric and harmonic means and integrable systems. J. Comput. Appl. Math. 131, 161–174 (2001)
Narita, K.: Soliton solution to extended Volterra equation. J. Phys. Soc. Japan 51, 1682–1685 (1982)
Olver, F.W., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010)
Osada, N.: Acceleration methods for slowly convergent sequences and their applications. PhD thesis, Nagoya University, Japan (1993)
Grammaticos, B., Papageorgiou, V., Ramani, A.: Orthogonal polynomial approach to discrete Lax pairs for initial-boundary value problems of the QD algorithm. Lett. Math. Phys. 34, 91–101 (1995)
Papageorgiou, V., Grammaticos, B., Ramani, A.: Integrable lattices and convergence acceleration algorithms. Phys. Lett. A 179, 111–115 (1993)
Pennacchi, R.: Le trasformazioni razionali di una successione. Calcolo 5, 37–50 (1968)
Rutishauser, H.: Der Quotienten-Differenzen-Algorithmus. Z. Angew. Math. Physik 5, 233–251 (1954)
Sato M., Sato, Y.: Soliton equations as dynamical systems on infinite dimensional Grassmann manifold. In: Fujita, H., Lax, P.D., Strang, G., (eds.) Nonlinear Partial Differential Equations in Applied Science, vol. 81, pp. 259–271. North-Holland Math. Stud. (1981)
Sidi, A.: Some properties of a generalization of the Richardson extrapolation process. J. Inst. Math. Appl. 24, 327–346 (1979)
Sidi, A.: Acceleration of convergence of (generalized) Fourier series by the d-transformation. Ann. Numer. Math. 2, 381–406 (1995)
Sidi, A.: Extension and completion of Wynn’s theory on convergence of columns of the epsilon table. J. Approx. Theory 86, 21–40 (1996)
Sidi, A.: Further convergence and stability results for the generalized Richardson extrapolation process \(\text{ GREP }^{(1)}\) with an application to the \(\text{ D }^{(1)}\)-transformation for infinite integrals. J. Comput. Appl. Math. 112, 269–290 (1999)
Sidi, A.: The Richardson extrapolation process with a harmonic sequence of collocation points. SIAM J. Numer. Anal. 37, 1729–1746 (2000)
Sidi, A.: A convergence and stability study of the iterated Lubkin transformation and the \(\theta \)-algorithm. Math. Comput. 72, 419–434 (2003)
Sidi, A.: Practical Extrapolation Methods: Theory and Applications. Cambridge University Press, Cambridge (2003)
Sidi, A.: Survey of numerical stability issues in convergence acceleration. Appl. Numer. Math. 60, 1395–1410 (2010)
Symes, W.W.: The QR algorithm and scattering for the finite nonperiodic Toda lattice. Phys. D. 4, 275–280 (1981/1982)
Temme, N.M.: Special Functions: An Introduction to the Classical Functions of Mathematical Physics. Wiley-Interscience, New York (1996)
Tsujimoto, S., Nakamura, Y., Iwasaki, M.: The discrete Lotka–Volterra system computes singular values. Inverse Probl. 17, 53–58 (2001)
Weniger, E.J.: Nonlinear sequence transformations for the acceleration of convergence and the summation of divergent series. Comput. Phys. Rep. 10, 189–371 (1989)
Wimp, J.: Sequence Transformations and Their Applications. Academic Press, London (1981)
Wynn, P.: On a device for computing the \(e_m(S_n)\) transformation. Math. Tables Aids Comput. 10, 91–96 (1956)
Wynn, P.: On the convergence and stability of the epsilon algorithm. SIAM J. Numer. Anal. 3, 91–122 (1966)
Acknowledgments
The authors would like to express their sincere thanks to the referees for their pertinent and valuable comments. This work was partially supported by the National Natural Science Foundation of China (Grant No. 11071241, Grant No. 11201469), the knowledge innovation program of LSEC and the Institute of Computational Mathematics, AMSS, CAS, and the China Postdoctoral Science Foundation funded project (Grant No. 2012M510186).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sun, JQ., Chang, XK., He, Y. et al. An Extended Multistep Shanks Transformation and Convergence Acceleration Algorithm with Their Convergence and Stability Analysis. Numer. Math. 125, 785–809 (2013). https://doi.org/10.1007/s00211-013-0549-1
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-013-0549-1