A mixed finite element method for thin film epitaxy | Numerische Mathematik Skip to main content
Log in

A mixed finite element method for thin film epitaxy

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We present a mixed finite element method for the thin film epitaxy problem. Comparing to the primal formulation which requires \(C^2\) elements in the discretization, the mixed formulation only needs to use \(C^1\) elements, by introducing proper dual variables. The dual variable in our method is defined naturally from the nonlinear term in the equation, and its accurate approximation will be essential for understanding the long-time effect of the nonlinear term. For time-discretization, we use a backward-Euler semi-implicit scheme, which involves a convex–concave decomposition of the nonlinear term. The scheme is proved to be unconditionally stable and its convergence rate is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, D.N., Falk, R.S.: A uniformly accurate finite element method for the Reissner–Mindlin plate. SIAM J. Numer. Anal. 26, 1276–1290 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bathe, K.J., Dvorkin, E.N.: A four-node plate bending element based on Mindlin–Reissner plate theory and a mixed interpolation. J. Numer. Methods Eng. 21, 367–383 (1985)

    Article  MATH  Google Scholar 

  3. Bathe, K.J., Brezzi, F.: On the convergence of a four-node plate bending element based on Mindlin–Reissner plate theory and a mixed interpolation. In: Whiteman, J.R. (ed.) MAFELAP V, pp. 491–503. Academic Press, London (1985)

    Google Scholar 

  4. Bathe, K.J., Brezzi, F.: A simplified analysis of two plate-bending elements-the MITC4 and MITC9 elements. In: Pande, G.N., Middleton, J. (eds.) MUNETA 87. Numerical Techniques for Engineering Analysis and Design, vol. 1 (1987)

  5. Berkovitz, L.D.: Convexity and optimization in \({\mathbb{R}}^n\). Wiley, New York (2002)

    Book  MATH  Google Scholar 

  6. Blomker, D., Gugg, C.: On the existence of solutions for amorphous molecular beam epitaxy. Nonlinear Anal. Real World Appl. 3, 61–73 (2002)

    Article  MathSciNet  Google Scholar 

  7. Brezzi, F., Fortin, M.: Numerical approximation of Mindlin-Reissner plates. Math. Comp. 47, 151–158 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brezzi, F., Bathe, K.J., Fortin, M.: Mixed interpolated elements for Reissner–Mindlin plates. J. Numer. Methods Eng. 28, 1787–1801 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. Caflisch, R.E., Gyure, M.F., Merriman, B., Osher, S., Ratsch, C., Vvedensky, D.D.: Island dynamics and the level set method for epitaxial growth. Appl. Math. Lett. 12, 13–22 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, W., Conde, S., Wang, C., Wang, X., Wise, S.M.: A linear energy stable scheme for a thin film model without slope selection. J. Sci. Comput. 26, 1–17 (2011)

    MATH  Google Scholar 

  11. Cho, A.: Film deposition by molecular beam techniques. J. Vac. Sci. Technol. 8, S31–S38 (1971)

    Article  Google Scholar 

  12. Cho, A., Arthur, J.: Molecular beam epitaxy. Prog. Solid State Chem. 10, 157–192 (1975)

    Article  Google Scholar 

  13. Clarke, S., Vvedensky, D.D.: Origin of reflection high-energy electron-diffraction intensity oscillations during molecular-beam epitaxy: a computational modeling approach. Phys. Rev. Lett. 58, 2235–2238 (1987)

    Article  Google Scholar 

  14. Copetti, M.I.M., Elliot, C.M.: Numerical Analysis of the Cahn–Hilliard equation with a logarithmic free energy. Numer. Math. 63, 39–65 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Du, Q., Nicolaides, R.A.: Numerical analysis of a continuum model of phase transition. SIAM J. Numer. Anal. 28, 1310–1322 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  16. Duran, R., Liberman, E.: On mixed finite element methods for the Reissner–Mindlin plate model. Math. Comp. 58, 561–573 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Elliot, C.M., French, D.A.: Numerical studies of the Cahn–Hilliard equation for phase separation. IMA J. Appl. Math. 38, 97–128 (1987)

    Article  MathSciNet  Google Scholar 

  18. Elliot, C.M., French, D.A.: A nonconforming finite-element method for the two-dimensional Cahn–Hilliard equation. SIAM J. Numer. Anal. 26, 884–903 (1989)

    Article  MathSciNet  Google Scholar 

  19. Elliot, C.M., French, D.A.: A second order splitting method for the Cahn–Hilliard equation. Numer. Math. 54, 575–590 (1989)

    Article  MathSciNet  Google Scholar 

  20. Eyre, D.J.: Unconditionally gradient stable time marching the Cahn–Hilliard equation. In: Bullard, J.W., Kalia, R., Stoneham, M., , Chen, L.Q. (eds.) Computational and Mathematical Models of Microstructural Evolution, p. 1712. Materials Research Society, Warrendale (1998)

  21. Feng, X., Prohl, A.: Error analysis of a mixed finite element method for the Cahn–Hilliard equation. Numer. Math. 99, 47–84 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gyure, M.F., Ratsch, C., Merriman, B., Caflisch, R.E., Osher, S.: Level-set methods for the simulation of epitaxial phenomena. Phys. Rev. E 58, R6927–R6930 (1998)

    Article  Google Scholar 

  23. Han, W., Cheng, X., Huang, H.: Some mixed finite element methods for biharmonic equation. J. Comp. Appl. Math. 126, 91–109 (1999)

    MathSciNet  Google Scholar 

  24. Hoppe, R.H., Nash, E.M.: A combined spectral element/finite element approach to the numerical solution of a nonlinear evolution equation describing amorphous surface growth of thin films. J. Numer. Math. 10, 127–136 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Johnson, C., Pitkäranta, J.: Analysis of some mixed finite element methods related to reduced integration. Math. Comp. 38, 375–400 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kang, H.C., Weinberg, W.H.: Dynamic Monte Carlo with a proper energy barrier: surface diffusion and two-dimensional domain ordering. J. Chem. Phys. 90, 2824–2830 (1989)

    Article  Google Scholar 

  27. King, B.B., Stein, O., Winkler, M.: A fourth-order parabolic equation modeling epitaxial thin film growth. J. Math. Anal. Appl. 286, 459–490 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kohn, R.V., Yan, X.: Upper bounds on the coarsening rate for an epitaxial growth model. Commun. Pure Appl. Math. 56, 1549–1564 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Krug, J.: Origins of scale invariance in growth processes. Adv. Phys. 46, 139–282 (1997)

    Article  Google Scholar 

  30. Li, B.: High-order surface relaxation versus the Ehrlich–Schwoebel effect. Nonlinearity 19, 2581–2603 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Li, B.: Variational properties of unbounded order parameters. SIAM J. Math. Anal. 38, 16–36 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, B., Liu, J.: Thin film epitaxy with or without slope selection. Eur. J. Appl. Math. 14, 713–743 (2003)

    Article  MATH  Google Scholar 

  33. Li, B., Liu, J.: Epitaxial growth without slope selection: energetics, coarsening, and dynamic scaling. J. Nonlinear Sci. 14, 429–451 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lu, X., Lin, P., Liu, J.: Analysis of a sequential regularization method for the unsteady Navier–Stokes equations. Math. Comp. 77, 1467–1494 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Malkus, D.S., Hughes, T.J.R.: Mixed finite element methods-reduced and selective integration techniques: a unification of concepts. Comput. Methods Appl. Mech. Eng. 15, 63–81 (1978)

    Article  MATH  Google Scholar 

  36. Ortiz, M., Repetto, E., Si, H.: A continuum model of kinetic roughening and coarsening in thin films. J. Mech. Phys. Solids 47, 697–730 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  37. Rost, M.: Continuum models for surface growth. Int. Ser. Numer. Math. 149, 195–208 (2005)

    Article  MathSciNet  Google Scholar 

  38. Schneider, M., Schuller, I.K., Rahman, A.: Epitaxial growth of silicon: a molecular-dynamics simulation. Phys. Rev. B 36, 1340–1343 (1987)

    Article  Google Scholar 

  39. Scholtz, R.: A mixed method for fourth-order problems using the linear finite elements. RAIRO Numer. Anal. 15, 85–90 (1978)

    Google Scholar 

  40. Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth function satisfying boundary conditions. Math. Comp. 54, 483–493 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  41. Siegert, M., Plischke, M.: Solid-on-solid models of molecular-beam epitaxy. Phys. Rev. E 50, 917–931 (1994)

    Article  Google Scholar 

  42. Villain, J.: Continuum models of crystal growth from atomistic beams with and without desorption. J. Phys. I 1, 19–42 (1991)

    Google Scholar 

  43. Wang, C., Wang, X., Wise, S.: Unconditionally stable schemes for equations of thin film epitaxy. Discrete Contin. Dyn. Syst. 28, 405–423 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. Xia, X., Chen, W., Liu, J.: Convergence analysis of implicit full discretization for the epitaxial growth model of thin films. Numer. Math. J. Chin. Univ. 34(1), 30–51 (2012). (in Chinese)

    Google Scholar 

  45. Xu, C., Tang, T.: Stability analysis of large time-stepping methods for epitaxial growth models. SIAM J. Numer. Anal. 44, 1759–1779 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Chen was supported by the 111 project, Key Project National Science Foundation of China (91130004) and the Natural Science Foundation of China (11171077). He also thanks Jianguo Liu in Duke University and Xiaoming Wang in Florida State University for the fruitful discussions. Wang thanks the Key Laboratory of Mathematics for Nonlinear Sciences (EYH1140070), Fudan University, for the support during her visit. The authors are also grateful to the anonymous referees for their helpful comments and suggestions which greatly improved the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanqiu Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, W., Wang, Y. A mixed finite element method for thin film epitaxy. Numer. Math. 122, 771–793 (2012). https://doi.org/10.1007/s00211-012-0473-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-012-0473-9

Mathematics Subject Classification (2000)

Navigation