Convergence and quasi-optimality of adaptive nonconforming finite element methods for some nonsymmetric and indefinite problems | Numerische Mathematik
Skip to main content

Convergence and quasi-optimality of adaptive nonconforming finite element methods for some nonsymmetric and indefinite problems

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

Recently an adaptive nonconforming finite element method (ANFEM) has been developed by Carstensen and Hoppe (in Numer Math 103:251–266, 2006). In this paper, we extend the result to some nonsymmetric and indefinite problems. The main tools in our analysis are a posteriori error estimators and a quasi-orthogonality property. In this case, we need to overcome two main difficulties: one stems from the nonconformity of the finite element space, the other is how to handle the effect of a nonsymmetric and indefinite bilinear form. An appropriate adaptive nonconforming finite element method featuring a marking strategy based on the comparison of the a posteriori error estimator and a volume term is proposed for the lowest order Crouzeix–Raviart element. It is shown that the ANFEM is a contraction for the sum of the energy error and a scaled volume term between two consecutive adaptive loops. Moreover, quasi-optimality in the sense of quasi-optimal algorithmic complexity can be shown for the ANFEM. The results of numerical experiments confirm the theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ainsworth M.: Robust a posteriori error estimation for nonconforming finite element approximation. SIAM J. Numer. Anal. 42, 2320–2341 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ainsworth M., Oden J.T.: A Posteriori Error Estimation in Finite Element Analysis. Wiley, New York (2000)

    MATH  Google Scholar 

  3. Arbogsat T., Chen Z.X.: On the implementation of mixed methods as nonconforming methods for second-order elliptic problems. Math. Comput. 64, 943–972 (1995)

    Google Scholar 

  4. Bahriawati C., Carstensen C.: Three Matlab implementations of the lowest-order Raviart–Thomas MFEM with a posteriori error control. Comput. Methods Appl. Math. 5(4), 333–361 (2005)

    MATH  MathSciNet  Google Scholar 

  5. Becker R., Mao S., Shi Z.C.: A convergent nonconforming adaptive finite element method with quasi-optimal complexity. SIAM J. Numer. Anal. 47, 4639–4659 (2010)

    Article  MathSciNet  Google Scholar 

  6. Bernardi C., Verfürth R.: Adaptive finite element methods for elliptic equations with nonsmooth coefficients. Numer. Math. 85, 579–608 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Binev P., Dahmen W., DeVore R.: Adaptive finite element methods with convergence rates. Numer. Math. 97, 219–268 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Brenner S.C.: Poincaré-Friedrichs inequalities for piecewise H 1 functions. SIAM J. Numer. Anal. 41, 306–324 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Byfut A., Gedicke J., Günther D., Reininghaus J., Wiedemann S. et al.: FFW Documentation. Humboldt University of Berlin, Germany (2007)

    Google Scholar 

  10. Carstensen C.: Quasi-interpolation and a posteriori error analysis in finite element methods. RAIRO Model. Math. Anal. Numer. 33, 1187–1202 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Carstensen C., Hoppe R.H.W.: Convergence analysis of an adaptive nonconforming finite element method. Numer. Math. 103, 251–266 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Carstensen C., Hoppe R.H.W.: Error reduction and convergence for an adaptive mixed finite element method. Math. Comput. 75, 1033–1042 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Carstensen C., Hu J., Orlando A.: Framework for the a posteriori error analysis of nonconforming finite elements. SIAM J. Numer. Anal. 45, 68–82 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Carstensen C., Hu J.: A unifying theory of a posteriori error control for nonconforming finite element methods. Numer. Math. 107, 473–502 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Carstensen C., Bartels S., Jansche S.: A posteriori error estimates for nonconforming finite element methods. Numer. Math. 92, 233–256 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Cascon J.M., Kreuzer C., Nochetto R.H., Sibert K.G.: Quasi-optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal. 46, 2524–2550 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Chen J., Li L.: Convergence and domain decomposition algorithm for nonconforming and mixed methods for nonselfadjoint and indefinite problems. Comput. Methods Appl. Mech. Eng. 173, 1–20 (1999)

    Article  MATH  Google Scholar 

  18. Chen L., Holst M., Xu J.: Convergence and optimality of adaptive mixed finite element methods. Math. Comput. 78, 35–53 (2008)

    MathSciNet  Google Scholar 

  19. Chen Z., Dai S.: On the efficiency of adaptive finite element methods for elliptic problems with discontinous coefficients. SIAM J. Sci. Comput. 24, 443–462 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Chen Z.X., Kwak D.Y., Yon Y.J.: Multigrid algorithms for nonconforming and mixed methods for nonsymmetric and indefinite problems. SIAM J. Sci. Comput. 19, 502–515 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  21. Ciarlet P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  22. Dari E., Duran R.G., Padra C., Vampa V.: A posteriori error estimators for nonconforming finite element methods. RAIRO Model. Math. Anal. Numer. 30, 385–400 (1996)

    MATH  MathSciNet  Google Scholar 

  23. Douglas J. Jr., Robert J.E.: Global estimates for mixed methods for second order elliptic equations. Math. Comput. 44, 39–51 (1985)

    MATH  Google Scholar 

  24. Dryja M., Sarkis M.V., Widlund O.B.: Multilevel Schwarz methods for elliptic problems with discontinuous coefficients in three dimensions. Numer. Math. 72, 313–348 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  25. Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1998)

    Google Scholar 

  26. Hackbusch W.: Elliptic Differential Equations Theory and Numerical Treatment. Springer, Berlin (2003)

    Google Scholar 

  27. Hoppe R.H.W., Wohlmuth B.: Element-oriented and edge-oriented local error estimators for nonconforming finite element methods. RAIRO Model. Math. Anal. Numer. 30, 237–263 (1996)

    MATH  MathSciNet  Google Scholar 

  28. Hu, J., Xu, J.: Convergence of adaptive conforming and nonconforming finite element methods for the perturbed Stokes equation. Research Report 73, School of Mathematical Sciences and Institute of Mathematics, Peking University (2007)

  29. Jochmann F.: An Hs regularity result for the gradient of solutions to elliptic equations with mixed boundary conditions. J. Math. Anal. Appl. 238, 429–450 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  30. Mekchay K., Nochetto R.H.: Convergence of adaptive finite element methods for general second order linear elliptic PDEs. SIAM J. Numer. Anal. 43, 1803–1827 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  31. Morin P., Nochetto R.H., Siebert K.G.: Convergence of adaptive finite element methods. SIAM Rev. 44, 631–658 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  32. Oswald P.: Integrid transfer operators and multilevel preconditioners for nonconforming discretizations. Appl. Numer. Math. 23, 139–158 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  33. Petzoldt M.: A posteriori error estimators for elliptic equations with discontinuous diffusion coefficients. Adv. Comput. Math. 16, 47–75 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  34. Schatz A.H.: An observation concerning Ritz-Galerkin methods with indefinite bilinear forms. Math. Comput. 28, 959–962 (1974)

    MATH  MathSciNet  Google Scholar 

  35. Schatz A.H., Wang J.: Some new error estimates for Ritz-Galerkin methods with minimal regularity assumptions. Math. Comput. 65, 19–27 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  36. Schieweck F.: A posteriori error estimates with post-processing for nonconforming finite elements. ESAIM Math. Model. Numer. Anal. 36, 489–503 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  37. Shi Z.C., Xu X.: On a note for nonconforming multigrid for nonsymmetric and indefinite problems. Chinese J. Numer. Math. Appl. 22, 102–108 (2000)

    MathSciNet  Google Scholar 

  38. Stevenson R.: Optimality of a standard adaptive finite element method. Found. Comput. Math. 2, 245–269 (2007)

    Article  MathSciNet  Google Scholar 

  39. Verfürth R.: A Review of A Posteriori Error Estimation and Adaptive Mesh-refinement Techniques. Wiley-Teubner, Chichester (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huangxin Chen.

Additional information

Ronald H. W. Hoppe has been supported by the NSF under grants No. DMS-0511624, DMS-0707602, DMS-0810176, DMS-0811153, DMS-0914788. Xuejun Xu has been supported by the special funds for major state basic research projects (973) under 2005CB321701 and the National Science Foundation (NSF) of China (10731060).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, H., Xu, X. & Hoppe, R.H.W. Convergence and quasi-optimality of adaptive nonconforming finite element methods for some nonsymmetric and indefinite problems. Numer. Math. 116, 383–419 (2010). https://doi.org/10.1007/s00211-010-0307-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-010-0307-6

Mathematics Subject Classification (2000)