Abstract
Recently an adaptive nonconforming finite element method (ANFEM) has been developed by Carstensen and Hoppe (in Numer Math 103:251–266, 2006). In this paper, we extend the result to some nonsymmetric and indefinite problems. The main tools in our analysis are a posteriori error estimators and a quasi-orthogonality property. In this case, we need to overcome two main difficulties: one stems from the nonconformity of the finite element space, the other is how to handle the effect of a nonsymmetric and indefinite bilinear form. An appropriate adaptive nonconforming finite element method featuring a marking strategy based on the comparison of the a posteriori error estimator and a volume term is proposed for the lowest order Crouzeix–Raviart element. It is shown that the ANFEM is a contraction for the sum of the energy error and a scaled volume term between two consecutive adaptive loops. Moreover, quasi-optimality in the sense of quasi-optimal algorithmic complexity can be shown for the ANFEM. The results of numerical experiments confirm the theoretical findings.
Similar content being viewed by others
References
Ainsworth M.: Robust a posteriori error estimation for nonconforming finite element approximation. SIAM J. Numer. Anal. 42, 2320–2341 (2005)
Ainsworth M., Oden J.T.: A Posteriori Error Estimation in Finite Element Analysis. Wiley, New York (2000)
Arbogsat T., Chen Z.X.: On the implementation of mixed methods as nonconforming methods for second-order elliptic problems. Math. Comput. 64, 943–972 (1995)
Bahriawati C., Carstensen C.: Three Matlab implementations of the lowest-order Raviart–Thomas MFEM with a posteriori error control. Comput. Methods Appl. Math. 5(4), 333–361 (2005)
Becker R., Mao S., Shi Z.C.: A convergent nonconforming adaptive finite element method with quasi-optimal complexity. SIAM J. Numer. Anal. 47, 4639–4659 (2010)
Bernardi C., Verfürth R.: Adaptive finite element methods for elliptic equations with nonsmooth coefficients. Numer. Math. 85, 579–608 (2000)
Binev P., Dahmen W., DeVore R.: Adaptive finite element methods with convergence rates. Numer. Math. 97, 219–268 (2004)
Brenner S.C.: Poincaré-Friedrichs inequalities for piecewise H 1 functions. SIAM J. Numer. Anal. 41, 306–324 (2003)
Byfut A., Gedicke J., Günther D., Reininghaus J., Wiedemann S. et al.: FFW Documentation. Humboldt University of Berlin, Germany (2007)
Carstensen C.: Quasi-interpolation and a posteriori error analysis in finite element methods. RAIRO Model. Math. Anal. Numer. 33, 1187–1202 (1999)
Carstensen C., Hoppe R.H.W.: Convergence analysis of an adaptive nonconforming finite element method. Numer. Math. 103, 251–266 (2006)
Carstensen C., Hoppe R.H.W.: Error reduction and convergence for an adaptive mixed finite element method. Math. Comput. 75, 1033–1042 (2006)
Carstensen C., Hu J., Orlando A.: Framework for the a posteriori error analysis of nonconforming finite elements. SIAM J. Numer. Anal. 45, 68–82 (2007)
Carstensen C., Hu J.: A unifying theory of a posteriori error control for nonconforming finite element methods. Numer. Math. 107, 473–502 (2007)
Carstensen C., Bartels S., Jansche S.: A posteriori error estimates for nonconforming finite element methods. Numer. Math. 92, 233–256 (2002)
Cascon J.M., Kreuzer C., Nochetto R.H., Sibert K.G.: Quasi-optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal. 46, 2524–2550 (2008)
Chen J., Li L.: Convergence and domain decomposition algorithm for nonconforming and mixed methods for nonselfadjoint and indefinite problems. Comput. Methods Appl. Mech. Eng. 173, 1–20 (1999)
Chen L., Holst M., Xu J.: Convergence and optimality of adaptive mixed finite element methods. Math. Comput. 78, 35–53 (2008)
Chen Z., Dai S.: On the efficiency of adaptive finite element methods for elliptic problems with discontinous coefficients. SIAM J. Sci. Comput. 24, 443–462 (2002)
Chen Z.X., Kwak D.Y., Yon Y.J.: Multigrid algorithms for nonconforming and mixed methods for nonsymmetric and indefinite problems. SIAM J. Sci. Comput. 19, 502–515 (1998)
Ciarlet P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)
Dari E., Duran R.G., Padra C., Vampa V.: A posteriori error estimators for nonconforming finite element methods. RAIRO Model. Math. Anal. Numer. 30, 385–400 (1996)
Douglas J. Jr., Robert J.E.: Global estimates for mixed methods for second order elliptic equations. Math. Comput. 44, 39–51 (1985)
Dryja M., Sarkis M.V., Widlund O.B.: Multilevel Schwarz methods for elliptic problems with discontinuous coefficients in three dimensions. Numer. Math. 72, 313–348 (1996)
Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1998)
Hackbusch W.: Elliptic Differential Equations Theory and Numerical Treatment. Springer, Berlin (2003)
Hoppe R.H.W., Wohlmuth B.: Element-oriented and edge-oriented local error estimators for nonconforming finite element methods. RAIRO Model. Math. Anal. Numer. 30, 237–263 (1996)
Hu, J., Xu, J.: Convergence of adaptive conforming and nonconforming finite element methods for the perturbed Stokes equation. Research Report 73, School of Mathematical Sciences and Institute of Mathematics, Peking University (2007)
Jochmann F.: An Hs regularity result for the gradient of solutions to elliptic equations with mixed boundary conditions. J. Math. Anal. Appl. 238, 429–450 (1999)
Mekchay K., Nochetto R.H.: Convergence of adaptive finite element methods for general second order linear elliptic PDEs. SIAM J. Numer. Anal. 43, 1803–1827 (2005)
Morin P., Nochetto R.H., Siebert K.G.: Convergence of adaptive finite element methods. SIAM Rev. 44, 631–658 (2002)
Oswald P.: Integrid transfer operators and multilevel preconditioners for nonconforming discretizations. Appl. Numer. Math. 23, 139–158 (1997)
Petzoldt M.: A posteriori error estimators for elliptic equations with discontinuous diffusion coefficients. Adv. Comput. Math. 16, 47–75 (2002)
Schatz A.H.: An observation concerning Ritz-Galerkin methods with indefinite bilinear forms. Math. Comput. 28, 959–962 (1974)
Schatz A.H., Wang J.: Some new error estimates for Ritz-Galerkin methods with minimal regularity assumptions. Math. Comput. 65, 19–27 (1996)
Schieweck F.: A posteriori error estimates with post-processing for nonconforming finite elements. ESAIM Math. Model. Numer. Anal. 36, 489–503 (2002)
Shi Z.C., Xu X.: On a note for nonconforming multigrid for nonsymmetric and indefinite problems. Chinese J. Numer. Math. Appl. 22, 102–108 (2000)
Stevenson R.: Optimality of a standard adaptive finite element method. Found. Comput. Math. 2, 245–269 (2007)
Verfürth R.: A Review of A Posteriori Error Estimation and Adaptive Mesh-refinement Techniques. Wiley-Teubner, Chichester (1996)
Author information
Authors and Affiliations
Corresponding author
Additional information
Ronald H. W. Hoppe has been supported by the NSF under grants No. DMS-0511624, DMS-0707602, DMS-0810176, DMS-0811153, DMS-0914788. Xuejun Xu has been supported by the special funds for major state basic research projects (973) under 2005CB321701 and the National Science Foundation (NSF) of China (10731060).
Rights and permissions
About this article
Cite this article
Chen, H., Xu, X. & Hoppe, R.H.W. Convergence and quasi-optimality of adaptive nonconforming finite element methods for some nonsymmetric and indefinite problems. Numer. Math. 116, 383–419 (2010). https://doi.org/10.1007/s00211-010-0307-6
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-010-0307-6