First-order convergence of multi-point flux approximation on triangular grids and comparison with mixed finite element methods | Numerische Mathematik Skip to main content
Log in

First-order convergence of multi-point flux approximation on triangular grids and comparison with mixed finite element methods

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper we show first-order convergence of a multi-point flux approximation control volume method (MPFA) on unstructured triangular grids. In this approach the flux approximation is derived directly in the physical space. In order to do this, we introduce a perturbed mixed finite element method that is equivalent to the MPFA scheme and prove the first-order convergence of this approach. Moreover, we carefully compare the computational performance properties of the MPFA method with those of a lowest order Raviart–Thomas and Brezzi–Douglas–Marini mixed finite element approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aavatsmark I. et al.: Discretization on unstructured grids for inhomogeneous, anisotropic media, Part I and II. SIAM J. Sci. Comput. 19, 1700–1736 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aavatsmark I.: An introduction to multipoint flux approximations for quadrilateral grids. Comput. Geosci. 6, 404–432 (2002)

    Article  Google Scholar 

  3. Agelas L., Masson R.: Convergence of the MPFA O scheme for heterogeneous anisotropic diffusion problems on general meshes. C. R. Acad. Sci. Paris Ser. I 346, 1007–1012 (2008)

    MATH  MathSciNet  Google Scholar 

  4. Agouzal A., Baranger J., Maitre J.F., Oudin F.: Connection between finite volume and mixed finite element methods for a diffusion problem with nonconstant coefficients. Application to a convection diffusion problem. East-West J. Numer. Math. 3, 237–254 (1995)

    MATH  MathSciNet  Google Scholar 

  5. Arbogast T., Wheeler M.F., Zhang N.Y.: A nonlinear mixed finite element method for a degenerate parabolic equation arising in flow in porous media. SIAM J. Numer. Anal. 33, 1669–1687 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bause M.: Higher and lowest order mixed finite element approximation of subsurface flow problems with solutions of low regularity. Adv. Water Resour. 31, 370–382 (2008)

    Article  Google Scholar 

  7. Bause, M.: Higher order mixed finite element approximation of subsurface water flow. In: Proceedings in Applied Mathematics and Mechanics (PAMM), vol. 7, pp. 1024703–1024704 (2007)

  8. Bause M., Hoffmann J.: Numerical study of mixed finite element and multipoint flux approximation of flow in porous media. In: Kunisch, K., Of, G., Steinbach O., ((eds) Numerical Mathematics and Advanced Applications., pp. 433–440. Springer, Berlin (2008)

    Chapter  Google Scholar 

  9. Bause M., Knabner P.: Computation of variably saturated subsurface flow by adaptive mixed hybrid finite element methods. Adv. Water Resour. 27, 565–581 (2004)

    Article  Google Scholar 

  10. Brezzi F., Fortin M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)

    MATH  Google Scholar 

  11. Demlow A.: Suboptimal and optimal convergence in mixed finite element methods. SIAM J. Numer. Anal. 39, 1938–1953 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Grisvard P.: Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985)

    MATH  Google Scholar 

  13. Hoffmann, J.: Equivalence of the lowest-order Raviart–Thomas mixed finite element method and the multi point flux approximation scheme on triangular grids, University of Erlangen-Nuremberg, Preprint (2008)

  14. Klausen R.A., Winther R.: Robust convergence of multi point flux approximation on rough grids. Numer. Math. 104, 317–337 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Klausen, R.A., Radu, F.A., Eigestad, G.T.: Convergence of MPFA on triangulations and for Richards’ equation. Int. J. Numer. Methods Fluids, pp. 1–25 (2008). doi:10.1002/fld.1787

  16. Russell T., Wheeler M.F.: Finite element and finite difference methods for continuous flows in porous media. In: Ewing R.E., ((eds) The Mathematics of Reservoir Simulation., pp. 35–106. SIAM, Philadelphia (1983)

    Google Scholar 

  17. Quarteroni A., Valli A.: Numerical Approximation of Partial Differential Equations. Springer, New York (1994)

    MATH  Google Scholar 

  18. Radu F., Pop I.S., Knabner P.: Order of convergence estimates for an Euler implicit, mixed finite element discretization of Richards’ equation. SIAM J. Numer. Anal. 42, 1452–1478 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Triebel H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam (1978)

    Google Scholar 

  20. Vohralík M.: Equivalence between lowest-order mixed finite element and multi-point finite volume methods on simplicial meshes. M2AN Math. Model. Numer. Anal. 40, 367–391 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. Wheeler M.F., Yotov I.: A cell centered finite difference method on quadrilaterals. In: Arnold, D.N., Bochev, P.B., Lehoucq, R.B., Nicolaides, R.A., Shashkov, M. (eds) Compatible Spatial Discretization., pp. 189–206. The IMA Volumes in Mathematics and its Applications vol 142. Springer, New York (2006)

    Chapter  Google Scholar 

  22. Wheeler M.F., Yotov I.: A multipoint flux mixed finite element method. SIAM J. Numer. Anal. 44, 2082–2106 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Wloka J.: Partial Differential Equations. Cambridge University Press, New York (1987)

    MATH  Google Scholar 

  24. Younes A., Ackerer P., Chavent G.: From mixed finite elements to finite volumes for elliptic PDEs in two and three dimensions. Int. J. Methods Eng. 59, 365–388 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Bause.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bause, M., Hoffmann, J. & Knabner, P. First-order convergence of multi-point flux approximation on triangular grids and comparison with mixed finite element methods. Numer. Math. 116, 1–29 (2010). https://doi.org/10.1007/s00211-010-0290-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-010-0290-y

Mathematics Subject Classification (2000)

Navigation