Complex Gaussian quadrature of oscillatory integrals | Numerische Mathematik Skip to main content
Log in

Complex Gaussian quadrature of oscillatory integrals

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We construct and analyze Gauss-type quadrature rules with complex- valued nodes and weights to approximate oscillatory integrals with stationary points of high order. The method is based on substituting the original interval of integration by a set of contours in the complex plane, corresponding to the paths of steepest descent. Each of these line integrals shows an exponentially decaying behaviour, suitable for the application of Gaussian rules with non-standard weight functions. The results differ from those in previous research in the sense that the constructed rules are asymptotically optimal, i.e., among all known methods for oscillatory integrals they deliver the highest possible asymptotic order of convergence, relative to the required number of evaluations of the integrand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bleistein N., Handelsman R.A.: Asymptotic Expansions of Integrals. Dover Publications, New York (1986)

    Google Scholar 

  2. Chandler-Wilde S.N., Hothersall D.C.: Efficient calculation of the Green function for acoustic propagation above a homogeneous impedance plane. J. Sound Vibr. 180(5), 705–724 (1995)

    Article  MathSciNet  Google Scholar 

  3. Chihara T.S.: An Introduction to Orthogonal Polynomials. Gordon and Breach, New York (1978)

    MATH  Google Scholar 

  4. Cools R.: Constructing cubature formulae: the science behind the art. Acta Numer. 6, 1–54 (1997)

    Article  MathSciNet  Google Scholar 

  5. Davies K.T.R., Strayer M.R., White G.D.: Complex-plane methods for evaluating highly oscillatory integrals in nuclear physics. I. J. Phys. G. Nucl. Phys. 14(7), 961–972 (1988)

    Article  Google Scholar 

  6. Davis P.J., Rabinowitz P.: Methods of Numerical Integration. Academic Press, New York (1984)

    MATH  Google Scholar 

  7. Duits M., Kuijlaars A.B.J.: Painlevé I asymptotics for orthogonal polynomials with respect to a varying quadratic weight. Nonlinearity 19, 2211–2245 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Franklin J., Friedman B.: A Convergent Asymptotic Representation for Integrals. Proc. Cambr. Philos. Soc. 53, 612–619 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gautschi W.: Orthogonal Polynomials. Computation and Approximation. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  10. Gil, A., Segura, J., Temme, N.M.: Numerical methods for special functions. SIAM (2007)

  11. Golub G.H., Welsch J.H.: Calculation of Gauss quadrature rules. Math. Comp. 23(106), 221–230 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  12. Huybrechs D., Olver S.: Highly Oscillatory Problems: Computation, Theory and Applications, chapter Oscillatory integrals. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  13. Huybrechs D., Vandewalle S.: On the evaluation of highly oscillatory integrals by analytic continuation. SIAM J. Numer. Anal. 44(3), 1026–1048 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Huybrechs D., Vandewalle S.: The construction of cubature rules for multivariate highly oscillatory integrals. Math. Comp. 76(260), 1955–1980 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Iserles A., Nørsett S.P.: Efficient quadrature of highly oscillatory integrals using derivatives. Proc. R. Soc. Lond. A 461, 1383–1399 (2008)

    Google Scholar 

  16. Iserles A., Nørsett S.P.: On quadrature methods for highly oscillatory integrals and their implementation. BIT 44, 755–772 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Jones D.S.: Asymptotic behavior of integrals. SIAM Rev. 14(2), 286–317 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  18. Levin D.: Procedure for computing one- and two-dimensional integrals of functions with rapid irregular oscillations. Math. Comp. 38(158), 531–538 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  19. Levin E., Lubinsky D.: Orthogonal Polynomials for Exponential Weights. Springer, New York (2001)

    MATH  Google Scholar 

  20. Milovanovic G.V.: A class of polynomials orthogonal on the radial rays in the complex plane. J. Math. Anal. Appl. 206, 121–139 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  21. Olver F.W.J.: Asymptotics and Special Functions. Academic Press, San Diego (1974)

    Google Scholar 

  22. Olver S.: Moment-free numerical integration of highly oscillatory functions. IMA J. Numer. Anal. 26(2), 213–227 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Weideman J.A.C., Trefethen L.N.: Parabolic and hyperbolic contours for computing the Bromwich integral. Math. Comp. 76, 1341–1356 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. Wong R.: Asymptotic Approximations of Integrals. Academic Press, New York (1989)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daan Huybrechs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deaño, A., Huybrechs, D. Complex Gaussian quadrature of oscillatory integrals. Numer. Math. 112, 197–219 (2009). https://doi.org/10.1007/s00211-008-0209-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-008-0209-z

Mathematics Subject Classification (2000)

Navigation