Abstract
We construct and analyze Gauss-type quadrature rules with complex- valued nodes and weights to approximate oscillatory integrals with stationary points of high order. The method is based on substituting the original interval of integration by a set of contours in the complex plane, corresponding to the paths of steepest descent. Each of these line integrals shows an exponentially decaying behaviour, suitable for the application of Gaussian rules with non-standard weight functions. The results differ from those in previous research in the sense that the constructed rules are asymptotically optimal, i.e., among all known methods for oscillatory integrals they deliver the highest possible asymptotic order of convergence, relative to the required number of evaluations of the integrand.
Similar content being viewed by others
References
Bleistein N., Handelsman R.A.: Asymptotic Expansions of Integrals. Dover Publications, New York (1986)
Chandler-Wilde S.N., Hothersall D.C.: Efficient calculation of the Green function for acoustic propagation above a homogeneous impedance plane. J. Sound Vibr. 180(5), 705–724 (1995)
Chihara T.S.: An Introduction to Orthogonal Polynomials. Gordon and Breach, New York (1978)
Cools R.: Constructing cubature formulae: the science behind the art. Acta Numer. 6, 1–54 (1997)
Davies K.T.R., Strayer M.R., White G.D.: Complex-plane methods for evaluating highly oscillatory integrals in nuclear physics. I. J. Phys. G. Nucl. Phys. 14(7), 961–972 (1988)
Davis P.J., Rabinowitz P.: Methods of Numerical Integration. Academic Press, New York (1984)
Duits M., Kuijlaars A.B.J.: Painlevé I asymptotics for orthogonal polynomials with respect to a varying quadratic weight. Nonlinearity 19, 2211–2245 (2006)
Franklin J., Friedman B.: A Convergent Asymptotic Representation for Integrals. Proc. Cambr. Philos. Soc. 53, 612–619 (1957)
Gautschi W.: Orthogonal Polynomials. Computation and Approximation. Oxford University Press, Oxford (2004)
Gil, A., Segura, J., Temme, N.M.: Numerical methods for special functions. SIAM (2007)
Golub G.H., Welsch J.H.: Calculation of Gauss quadrature rules. Math. Comp. 23(106), 221–230 (1969)
Huybrechs D., Olver S.: Highly Oscillatory Problems: Computation, Theory and Applications, chapter Oscillatory integrals. Cambridge University Press, Cambridge (2008)
Huybrechs D., Vandewalle S.: On the evaluation of highly oscillatory integrals by analytic continuation. SIAM J. Numer. Anal. 44(3), 1026–1048 (2006)
Huybrechs D., Vandewalle S.: The construction of cubature rules for multivariate highly oscillatory integrals. Math. Comp. 76(260), 1955–1980 (2007)
Iserles A., Nørsett S.P.: Efficient quadrature of highly oscillatory integrals using derivatives. Proc. R. Soc. Lond. A 461, 1383–1399 (2008)
Iserles A., Nørsett S.P.: On quadrature methods for highly oscillatory integrals and their implementation. BIT 44, 755–772 (2004)
Jones D.S.: Asymptotic behavior of integrals. SIAM Rev. 14(2), 286–317 (1972)
Levin D.: Procedure for computing one- and two-dimensional integrals of functions with rapid irregular oscillations. Math. Comp. 38(158), 531–538 (1982)
Levin E., Lubinsky D.: Orthogonal Polynomials for Exponential Weights. Springer, New York (2001)
Milovanovic G.V.: A class of polynomials orthogonal on the radial rays in the complex plane. J. Math. Anal. Appl. 206, 121–139 (1997)
Olver F.W.J.: Asymptotics and Special Functions. Academic Press, San Diego (1974)
Olver S.: Moment-free numerical integration of highly oscillatory functions. IMA J. Numer. Anal. 26(2), 213–227 (2006)
Weideman J.A.C., Trefethen L.N.: Parabolic and hyperbolic contours for computing the Bromwich integral. Math. Comp. 76, 1341–1356 (2007)
Wong R.: Asymptotic Approximations of Integrals. Academic Press, New York (1989)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Deaño, A., Huybrechs, D. Complex Gaussian quadrature of oscillatory integrals. Numer. Math. 112, 197–219 (2009). https://doi.org/10.1007/s00211-008-0209-z
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-008-0209-z