hp-Discontinuous Galerkin methods for strongly nonlinear elliptic boundary value problems | Numerische Mathematik Skip to main content
Log in

hp-Discontinuous Galerkin methods for strongly nonlinear elliptic boundary value problems

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper, we have analyzed a one parameter family of hp-discontinuous Galerkin methods for strongly nonlinear elliptic boundary value problems \(-\nabla \cdot {\rm a} (u, \nabla u) + f (u, \nabla u) = 0\) with Dirichlet boundary conditions. These methods depend on the values of the parameter \(\theta\in[-1,1]\) , where θ =  + 1 corresponds to the nonsymmetric and θ = −1 corresponds to the symmetric interior penalty methods when \({\rm a}(u,\nabla u)={\nabla}u\) and f(u,∇u) = −f, that is, for the Poisson problem. The error estimate in the broken H 1 norm, which is optimal in h (mesh size) and suboptimal in p (degree of approximation) is derived using piecewise polynomials of degree p ≥ 2, when the solution \(u\in H^{5/2}(\Omega)\) . In the case of linear elliptic problems also, this estimate is optimal in h and suboptimal in p. Further, optimal error estimate in the L 2 norm when θ = −1 is derived. Numerical experiments are presented to illustrate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ainsworth M. and Kay D. (1999). The approximation theory for the p-version finite element method and application to the nonlinear elliptic PDEs. Numer. Math. 82: 351–388

    Article  MATH  MathSciNet  Google Scholar 

  2. Ainsworth M. and Kay D. (2000). Approximation theory for the hp-version finite element method and application to the nonlinear Laplacian. Appl. Numer. Math. 34: 329–344

    Article  MATH  MathSciNet  Google Scholar 

  3. Arnold D.N. (1982). An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19: 742–760

    Article  MATH  MathSciNet  Google Scholar 

  4. Arnold D.N., Brezzi F., Cockburn B. and Marini L.D. (2002). Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39: 1749–1779

    Article  MATH  MathSciNet  Google Scholar 

  5. Babuska I. and Suri M. (1987). The h-p version of the finite element method with quasiuniform meshes. RIARO Model. Math. Anal. Numer. 21: 199–238

    MATH  MathSciNet  Google Scholar 

  6. Bernardi, C., Dauge, M., Maday, Y.: Polynomials in the Sobolev world. Preprint of the Laboratoire Jacques-Louis Lions, No. R03038 (2003)

  7. Brenner S.C. (2003). Poincaré–Friedrichs inequalities for piecewise H 1 functions. SIAM J. Numer. Anal. 41: 306–324

    Article  MATH  MathSciNet  Google Scholar 

  8. Brezzi F., Manzini M., Marini L.D. and Pietra P. (2000). Discontinuous Galerkin approximations for elliptic problems. Numer. Methods PDE. 16: 265–278

    MathSciNet  Google Scholar 

  9. Bustinza R. and Gatica G. (2004). A local discontinuous Galerkin method for nonlinear diffusion problems with mixed boundary conditions. SIAM J. Sci. Comput. 26: 152–177

    Article  MATH  MathSciNet  Google Scholar 

  10. Bustinza R. and Gatica G. (2005). A mixed local discontinuous Galerkin method for a class of nonlinear problems in fluid mechanics. J. Comput. Phys. 207: 427–456

    Article  MATH  MathSciNet  Google Scholar 

  11. Ciarlet P.G. (1978). The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam

    MATH  Google Scholar 

  12. Douglas, J. Jr, Dupont, T.: Interior penalty procedures for elliptic and parabolic Galerkin methods. In: Computing Methods in Applied Sciences, Lecture Notes in Phys, vol. 58, pp. 207–216. Springer, Berlin (1976)

  13. Georgoulis E.H. and Süli E. (2005). Optimal error estimates for the hp-version interior penalty discontinuous Galerkin finite element method. IMA J. Numer. Anal. 25: 205–220

    Article  MATH  MathSciNet  Google Scholar 

  14. Gilbarg D. and Trudinger N.S. (1983). Elliptic Partial Differential Equations of Second Order. Springer, Heidelberg

    MATH  Google Scholar 

  15. Gudi T. and Pani A.K. (2007). Discontinuous Galerkin methods for quasilinear elliptic problems of nonmonotone-type. SIAM J. Numer. Anal. 45: 163–192

    Article  MATH  MathSciNet  Google Scholar 

  16. Houston P., Schwab C. and Süli E. (2002). Discontinuous hp-finite element methods for advection–diffusion–reaction problems. SIAM J. Numer. Anal. 39: 2133–2163

    Article  MATH  MathSciNet  Google Scholar 

  17. Houston P., Robson J.A. and Süli E. (2005). Discontinuous Galerkin finite element approximation of quasilinear elliptic boundary value problems I: the scalar case. IMA J. Numer. Anal. 25: 726–749

    Article  MATH  MathSciNet  Google Scholar 

  18. Larson M.G. and Niklasson A.J. (2004). Analysis of a family of discontinuous Galerkin methods for eliptic problems: One dimensional analysis. Numer. Math. 99: 113–130

    Article  MATH  MathSciNet  Google Scholar 

  19. Lasis, A., Süli, E.: Poincaré-type inequalities for Broken Sobolev spaces. Isaac Newton Institute for Mathematical Sciences, Preprint No. NI03067-CPD (2003)

  20. Melenk J.M. and Wohlmuth B.I. (2001). On residual based a posteriori error estimation in hp-FEM. Adv. Comput. Math. 15: 311–331

    Article  MATH  MathSciNet  Google Scholar 

  21. Oden J.T., Babuska I. and Baumann C.E. (1998). A discontinuous hp finite element method for diffusion problems. J. Comput. Phys. 146: 491–519

    Article  MATH  MathSciNet  Google Scholar 

  22. Ortner C. and Süli E. (2007). Discontinuous Galerkin finite element approximation of nonlinear second-order elliptic and hyperbolic systems. SIAM J. Numer. Anal. 45: 1370–1397

    Article  MathSciNet  Google Scholar 

  23. Prudhomme, S., Pascal, F., Oden, J.T.: Review of error estimation for discontinuous Galerkin methods. TICAM REPORT 00-27, 17 October, (2000)

  24. Rivière B., Wheeler M.F. and Girault V. (2001). A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems. SIAM J. Numer. Anal. 39: 902–931

    Article  MATH  MathSciNet  Google Scholar 

  25. Wheeler M.F. (1978). An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15: 152–161

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amiya K. Pani.

Additional information

Supported by DST-DAAD (PPP-05) project.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gudi, T., Nataraj, N. & Pani, A.K. hp-Discontinuous Galerkin methods for strongly nonlinear elliptic boundary value problems. Numer. Math. 109, 233–268 (2008). https://doi.org/10.1007/s00211-008-0137-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-008-0137-y

Mathematics Subject Classification (2000)

Navigation