Abstract
In this paper, we have analyzed a one parameter family of hp-discontinuous Galerkin methods for strongly nonlinear elliptic boundary value problems \(-\nabla \cdot {\rm a} (u, \nabla u) + f (u, \nabla u) = 0\) with Dirichlet boundary conditions. These methods depend on the values of the parameter \(\theta\in[-1,1]\) , where θ = + 1 corresponds to the nonsymmetric and θ = −1 corresponds to the symmetric interior penalty methods when \({\rm a}(u,\nabla u)={\nabla}u\) and f(u,∇u) = −f, that is, for the Poisson problem. The error estimate in the broken H 1 norm, which is optimal in h (mesh size) and suboptimal in p (degree of approximation) is derived using piecewise polynomials of degree p ≥ 2, when the solution \(u\in H^{5/2}(\Omega)\) . In the case of linear elliptic problems also, this estimate is optimal in h and suboptimal in p. Further, optimal error estimate in the L 2 norm when θ = −1 is derived. Numerical experiments are presented to illustrate the theoretical results.
Similar content being viewed by others
References
Ainsworth M. and Kay D. (1999). The approximation theory for the p-version finite element method and application to the nonlinear elliptic PDEs. Numer. Math. 82: 351–388
Ainsworth M. and Kay D. (2000). Approximation theory for the hp-version finite element method and application to the nonlinear Laplacian. Appl. Numer. Math. 34: 329–344
Arnold D.N. (1982). An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19: 742–760
Arnold D.N., Brezzi F., Cockburn B. and Marini L.D. (2002). Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39: 1749–1779
Babuska I. and Suri M. (1987). The h-p version of the finite element method with quasiuniform meshes. RIARO Model. Math. Anal. Numer. 21: 199–238
Bernardi, C., Dauge, M., Maday, Y.: Polynomials in the Sobolev world. Preprint of the Laboratoire Jacques-Louis Lions, No. R03038 (2003)
Brenner S.C. (2003). Poincaré–Friedrichs inequalities for piecewise H 1 functions. SIAM J. Numer. Anal. 41: 306–324
Brezzi F., Manzini M., Marini L.D. and Pietra P. (2000). Discontinuous Galerkin approximations for elliptic problems. Numer. Methods PDE. 16: 265–278
Bustinza R. and Gatica G. (2004). A local discontinuous Galerkin method for nonlinear diffusion problems with mixed boundary conditions. SIAM J. Sci. Comput. 26: 152–177
Bustinza R. and Gatica G. (2005). A mixed local discontinuous Galerkin method for a class of nonlinear problems in fluid mechanics. J. Comput. Phys. 207: 427–456
Ciarlet P.G. (1978). The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam
Douglas, J. Jr, Dupont, T.: Interior penalty procedures for elliptic and parabolic Galerkin methods. In: Computing Methods in Applied Sciences, Lecture Notes in Phys, vol. 58, pp. 207–216. Springer, Berlin (1976)
Georgoulis E.H. and Süli E. (2005). Optimal error estimates for the hp-version interior penalty discontinuous Galerkin finite element method. IMA J. Numer. Anal. 25: 205–220
Gilbarg D. and Trudinger N.S. (1983). Elliptic Partial Differential Equations of Second Order. Springer, Heidelberg
Gudi T. and Pani A.K. (2007). Discontinuous Galerkin methods for quasilinear elliptic problems of nonmonotone-type. SIAM J. Numer. Anal. 45: 163–192
Houston P., Schwab C. and Süli E. (2002). Discontinuous hp-finite element methods for advection–diffusion–reaction problems. SIAM J. Numer. Anal. 39: 2133–2163
Houston P., Robson J.A. and Süli E. (2005). Discontinuous Galerkin finite element approximation of quasilinear elliptic boundary value problems I: the scalar case. IMA J. Numer. Anal. 25: 726–749
Larson M.G. and Niklasson A.J. (2004). Analysis of a family of discontinuous Galerkin methods for eliptic problems: One dimensional analysis. Numer. Math. 99: 113–130
Lasis, A., Süli, E.: Poincaré-type inequalities for Broken Sobolev spaces. Isaac Newton Institute for Mathematical Sciences, Preprint No. NI03067-CPD (2003)
Melenk J.M. and Wohlmuth B.I. (2001). On residual based a posteriori error estimation in hp-FEM. Adv. Comput. Math. 15: 311–331
Oden J.T., Babuska I. and Baumann C.E. (1998). A discontinuous hp finite element method for diffusion problems. J. Comput. Phys. 146: 491–519
Ortner C. and Süli E. (2007). Discontinuous Galerkin finite element approximation of nonlinear second-order elliptic and hyperbolic systems. SIAM J. Numer. Anal. 45: 1370–1397
Prudhomme, S., Pascal, F., Oden, J.T.: Review of error estimation for discontinuous Galerkin methods. TICAM REPORT 00-27, 17 October, (2000)
Rivière B., Wheeler M.F. and Girault V. (2001). A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems. SIAM J. Numer. Anal. 39: 902–931
Wheeler M.F. (1978). An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15: 152–161
Author information
Authors and Affiliations
Corresponding author
Additional information
Supported by DST-DAAD (PPP-05) project.
Rights and permissions
About this article
Cite this article
Gudi, T., Nataraj, N. & Pani, A.K. hp-Discontinuous Galerkin methods for strongly nonlinear elliptic boundary value problems. Numer. Math. 109, 233–268 (2008). https://doi.org/10.1007/s00211-008-0137-y
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-008-0137-y