Ternary codes from some reflexive uniform subset graphs | Applicable Algebra in Engineering, Communication and Computing
Skip to main content

Ternary codes from some reflexive uniform subset graphs

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

We examine the ternary codes \(C_3(A_i+I)\) from matrices \(A_i+I\) where \(A_i\) is an adjacency matrix of a uniform subset graph \(\Gamma (n,3,i)\) of \(3\)-subsets of a set of size \(n\) with adjacency defined by subsets meeting in \(i\) elements of \(\Omega \), where \(0 \le i \le 2\). Most of the main parameters are obtained; the hulls, the duals, and other subcodes of the \(C_3(A_i+I)\) are also examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Assmus, E.F. Jr, Key, J.D.: Designs and Their Codes. Cambridge Tracts in Mathematics, vol. 103. Cambridge University Press, Cambridge (1992). (Second printing with corrections, 1993)

  2. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system I: the user language. J. Symb. Comput. 24(3/4), 235–265 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cannon, J., Steel, A., White, G.: Linear codes over finite fields. In: Cannon, J., Bosma, W. (eds.) Handbook of Magma Functions, Computational Algebra Group, Department of Mathematics, University of Sydney, vol. 2.13, pp. 3951–4023 (2006) http://magma.maths.usyd.edu.au/magma

  4. Dankelmann, P., Key, J.D., Rodrigues, B.G.: A characterization of graphs by codes from their incidence matrices. Electron. J. Comb. 20(3), P18 (2013)

    MathSciNet  Google Scholar 

  5. Dankelmann, P., Key, J.D., Rodrigues, B.G.: Codes from incidence matrices of graphs. Des. Codes Cryptogr. 68, 373–393 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fish, W., Key, J. D., Mwambene, E.: Binary codes from reflexive graphs on \(3\)-sets (Submitted)

  7. Fish, W., Key, J.D., Mwambene, E.: Binary codes from designs from the reflexive \(n\)-cube. Util. Math. 85, 235–246 (2011)

    MathSciNet  MATH  Google Scholar 

  8. Fish, W.: Codes from uniform subset graphs and cycle products. Ph.D. thesis, University of the Western Cape (2007)

  9. Ghinelli, D., Key, J.D., McDonough, T.P.: Hulls of codes from incidence matrices of connected regular graphs. Des. Codes Cryptogr. 70, 35–54 (2014). doi:10.1007/s10623-012-9635-0

    Article  MathSciNet  MATH  Google Scholar 

  10. Haemers, W.H., Peeters, R., van Rijckevorsel, J.M.: Binary codes of strongly regular graphs. Des. Codes Cryptogr. 17, 187–209 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Huffman, W.C.: Codes and groups. In: Pless, V.S., Huffman, W.C. (eds.) Handbook of Coding Theory, Part 2, Chap. 17, vol. 2, pp. 1345–1440. Elsevier, Amsterdam (1998)

  12. Key, J.D., Moori, J., Rodrigues, B.G.: Binary codes from graphs on triples. Discret. Math. 282(1–3), 171–182 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Key, J.D., Moori, J., Rodrigues, B.G.: Partial permutation decoding of some binary codes from graphs on triples. Ars Comb. 79, 11–19 (2006)

    MathSciNet  MATH  Google Scholar 

  14. Key, J.D., Moori, J., Rodrigues, B.G.: Ternary codes from graphs on triples. Discret. Math. 309, 4663–4681 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Key.

Appendix

Appendix

The general description of the words \(w_\pi \) that sum to give \(w_1-w_2\) when \(n \equiv 0 \text{(mod } 3\text{) }\) used in the proof of Proposition 6 is given here. For short, we write \([i,j,k,l]\) to denote the word \(w_\pi \) from the partition \([[1,2],[i,j],[k,l]]\) as defined in Definition 2. We take the sum of:

$$\begin{aligned}&[3,4,5,6],[3,5,4,6];[3,7,8,9],[3,8,7,9];\ldots ;\\&[3,n-2,n-1,n],[3,n-1,n-2,n];\\&[4,7,8,9],[4,8,7,9];\ldots ;[4,n-2,n-1,n],[4,n-1,n-2,n];\\&[5,7,8,9],[5,8,7,9];\ldots ;[5,n-2,n-1,n],[5,n-1,n-2,n];\\&[6,7,8,9],[6,8,7,9];\ldots ;[6,n-2,n-1,n],[6,n-1,n-2,n];\\&[7,10,11,12],[7,11,10,12];\ldots ;[7,n-2,n-1,n],[7,n-1,n-2,n];\\&[8,10,11,12],[8,11,10,12];\ldots ;[8,n-2,n-1,n],[8,n-1,n-2,n];\\&[9,10,11,12],[9,11,10,12];\ldots ;[9,n-2,n-1,n],[7,n-1,n-2,n];\\&\vdots \\&[n-5,n-2,n-1,n],[n-5,n-1,n-2,n];\\&[n-4,n-2,n-1,n],[n-4,n-1,n-2,n];\\&[n-3,n-2,n-1,n],[n-3,n-1,n-2,n]; \end{aligned}$$

It is easy to verify that these \(\frac{1}{3}(n-3)(n-4)\) words \(w_\pi \) add up to \(w_1-w_2\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fish, W., Key, J.D. & Mwambene, E. Ternary codes from some reflexive uniform subset graphs. AAECC 25, 363–382 (2014). https://doi.org/10.1007/s00200-014-0233-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-014-0233-4

Keywords

Mathematics Subject Classifications