Homological models for semidirect products of finitely generated Abelian groups | Applicable Algebra in Engineering, Communication and Computing Skip to main content
Log in

Homological models for semidirect products of finitely generated Abelian groups

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

Let G be a semidirect product of finitely generated Abelian groups. We provide a method for constructing an explicit contraction (special homotopy equivalence) from the reduced bar construction of the group ring of G, \({\overline{B}(\mathsf{\textstyle Z\kern-0.4em Z}[G])}\) , to a much smaller DGA-module hG. Such a contraction is called a homological model for G and is used as the input datum in the methods described in Álvarez et al. (J Symb Comput 44:558–570, 2009; 2012) for calculating a generating set for representative 2-cocycles and n-cocycles over G, respectively. These computations have led to the finding of new cocyclic Hadamard matrices (Álvarez et al. in 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Álvarez, V., Armario, J.A., Frau, M.D., Real, P.: A Mathematica notebook for computing the homology of iterated products of groups. In: Iglesias, A., Takayama N. (eds.) ICMS-2 Proceedings, LNCS, vol. 4151, pp. 47–57. Springer, Berlin (2006)

  2. Álvarez, V., Armario, J.A., Frau, M.D., Real, P.: Calculating cocyclic Hadamard matrices in Mathematica: exhaustive and heuristic searches. In: Iglesias, A., Takayama N. (eds.) ICMS-2 Proceedings. LNCS, vol. 4151, pp. 419–422. Springer, Berlin (2006)

  3. Álvarez, V., Armario, J.A., Frau, M.D., Real, P.: http://library.wolfram.com/infocenter/MathSource/6516/

  4. Álvarez V., Armario J.A., Frau M.D., Real P.: The homological reduction method for computing cocyclic matrices. J. Symb. Comput. 44, 558–570 (2009)

    Article  MATH  Google Scholar 

  5. Álvarez, V., Armario, J.A., Frau, M.D., Real, P.: The cohomological reduction method for computing n-dimensional cocycles Hadamard matrices. Preprint, p. 15 (2012). arXiv:1201.4026vl

  6. Brady T.: Free resolutions for semi-direct products. Tohoku Math. J. 45, 535–537 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brown, K.S.: Cohomology of Groups. Graduate Texts in Math, vol. 8. Springer, New York (1982)

  8. Brown, R.: The twisted Eilenberg-Zilber theorem. In: Oderisi, G. (eds.) Celebrazioni Achimedee del secolo XX, Simposio di topologia, pp. 33–37. (Messina, 1964) (1965)

  9. Cohen D.C., Suciu A.I.: Homology of iterated semidirect products of free groups. J. Pure Appl. Algebra 126, 87–120 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dousson, X., Rubio, J., Sergeraert, F., Siret, Y.: The Kenzo Program, Institut Fourier, Grenoble, 1999. http://www-fourier.ujf-grenoble.fr/~sergerar/Kenzo

  11. de Launey W., Horadam K.J.: A weak difference set construction for higher-dimensional designs. Des. Codes Cryptogr. 3, 75–87 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. de Launey, W., Horadam, K.J.: Cocyclic development of designs. J. Algebraic Combin. 2(3), 267–290 (1993). Erratum: J. Algebraic Combin. 129(1), (1994)

    Google Scholar 

  13. de Launey, W., Horadam, K.J.: Generation of cocyclic Hadamard matrices. In: Proceedings of Computational Algebra and Number Theory (Sydney, 1992), vol. 325, Math. Appl., pp. 279–290. Kluwer, Dordrecht (1995)

  14. Eilenberg S., Mac Lane S.: On the groups H(π, n) I. Ann. Math. 58, 55–106 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  15. Eilenberg S., Mac Lane S.: On the groups H(π, n) II. Ann. Math. 66, 49–139 (1954)

    Article  MathSciNet  Google Scholar 

  16. Eilenberg S., Zilber J.A.: On the products of complexes. Am. J. Math. 75, 200–204 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  17. Flannery D.L.: Calculation of cocyclic matrices. J. Pure Appl. Algebra 112, 181–190 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Grabmeier, J., Lambe, L.A.: Computing resolutions over finite p-groups. In: Betten, A., Kohnert, A., Lave, R., Wassermann, A. (eds.) Proceedings ALCOMA’99, LNCSE, pp. 157–195. Springer, Heidelberg (2001)

  19. Gugenheim V.K.A.M.: On a the chain complex of a fibration. Illinois J. Math. 3, 398–414 (1972)

    MathSciNet  Google Scholar 

  20. Gugenheim V.K.A.M., Lambe L.A.: Perturbation theory in differential homological algebra I. Illinois J. Math. 33, 556–582 (1989)

    MathSciNet  Google Scholar 

  21. Gugenheim V.K.A.M., Lambe L.A., Stasheff J.D.: Perturbation theory in differential homological algebra II. Illinois J. Math. 35(3), 357–373 (1991)

    MathSciNet  MATH  Google Scholar 

  22. Horadam K.J.: Hadamard Matrices and Their Applications. Princeton University Press, Princeton (2007)

    MATH  Google Scholar 

  23. Homological Algebra programming. A package for the GAP computational algebra system. http://www.gap-system.org/Packages/hap.html

  24. Huebschmann J.: Cohomology of nilpotent groups of class 2. J. Algebra 126, 400–450 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  25. Huebschmann J.: Cohomology of metacyclic groups. Trans. Am. Math. Soc. 328(1), 1–72 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  26. Huebschmann J., Kadeishvili T.: Small models for chain algebras. Math. Z. 207, 245–280 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hurewicz W.: Beitrge zur Topologie der Deformationen IV. Asphrische Rume. Nerderl. Akad. Wetensch. Proc. 39, 215–224 (1936)

    MATH  Google Scholar 

  28. Lambe L.A.: Resolutions which split off of the bar construction. J. Pure Appl. Algebra 84, 311–329 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lambe L.A., Stasheff J.D.: Applications of perturbation theory to iterated fibrations. Manuscripta Math. 58, 367–376 (1987)

    Article  MathSciNet  Google Scholar 

  30. Mac Lane S.: Origins of the cohomology groups. Enseign. Math. 24(2), 1–29 (1978)

    MathSciNet  MATH  Google Scholar 

  31. Mac Lane, S.: Homology. Classics in Mathematics. Springer, Berlin (1995). Reprint of the 1975 edition

  32. May, J.P.: Simplicial objects in Algebraic Topology. Chicago Lectures in Mathematics. The University of Chicago Press, Chicago (1992). Reprint of the 1967 edition

  33. Real P.: Homological perturbation theory and associativity. Homology Homotopy Appl. 2, 51–88 (2000)

    MathSciNet  MATH  Google Scholar 

  34. Romero, A., Ellis, G., Rubio, J.: Interoperating between computer algebra systems: computing homology of groups wiht Kenzo and GAP. In: Proceeding ISSAC 2099, pp. 303–310, ACM, New York (2009)

  35. Romero, A., Rubio, J.: Computing the homology of groups: the geometric way, p. 23 (2011) Preprint. arXiv:1107.3396vl

  36. Sergeraert F.: The computability problem in algebraic topology. Adv. Math. 1104, 1–29 (1994)

    Article  MathSciNet  Google Scholar 

  37. Shih W.: Homologie des espaces fibrés. Inst. Hautes Etudes Sci. 13, 293–312 (1962)

    Google Scholar 

  38. The GAP group. GAP—Groups, Algorithms, and Programming. http://www.gap-system.org

  39. Veblen, O.: Analysis Situs. Amer. Math. Soc. Coll. Publ. II, vol. 5, New York (1931)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Andrés Armario.

Additional information

V. Álvarez, J. A. Armario and M.D Frau have been partially supported by Junta de Andalucía, projects: FQM016 and P07-FQM-02980, and by MICINN (Spain) and FEDER (European Union), project: MTM2008-06578. P. Real has been partially supported by Junta de Andalucía, projects: FQM296 and P06-TIC-02268, And by MICINN (Spain) and FEDER (European Union), project: MTM2009-12716.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Álvarez, V., Armario, J.A., Frau, M.D. et al. Homological models for semidirect products of finitely generated Abelian groups. AAECC 23, 101–127 (2012). https://doi.org/10.1007/s00200-012-0163-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-012-0163-y

Keywords

Mathematics Subject Classification (2000)

Navigation