4D GPS water vapor tomography: new parameterized approaches | Journal of Geodesy Skip to main content
Log in

4D GPS water vapor tomography: new parameterized approaches

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Water vapor is a key variable in numerical weather prediction, as it plays an important role in atmospheric processes. Nonetheless, the distribution of water vapor in the atmosphere is observed with a coarse resolution in time and space compared to the resolution of numerical weather models. GPS water vapor tomography is one of the promising methods to improve the resolution of water vapor measurements. This paper presents new parameterized approaches for the determination of water vapor distribution in the troposphere by GPS. We present the methods and give first results validating the approaches. The parameterization of voxels (volumetric pixels) by trilinear and spline functions in ellipsoidal coordinates are introduced in this study. The evolution in time of the refractivity field is modeled by a Kalman filter with a temporal resolution of 30 s, which corresponds to the available GPS-data rate. The algorithms are tested with simulated and with real data from more than 40 permanent GPS receiver stations in Switzerland and adjoining regions covering alpine areas. The investigations show the potential of the new parameterized approaches to yield superior results compared to the non parametric classical one. The accuracy of the tomographic result is quantified by the inter-quartile range (IQR), which is decreased by 10–20% with the new approaches. Further, parameterized voxel solutions have a substantially smaller maximal error than the non parameterized ones. Simulations show a limited ability to resolve vertical structures above the top station of the network with GPS tomography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bastin S, Champollion C, Bock O, Drobinski P, Masson F (2007) Diurnal cycle of water vapor as documented by a dense GPS network in a coastal area during ESCOMPTE IOP2. Bull Am Meteorol Soc 46: 167–182

    Google Scholar 

  • Buzzi M (2008) Challenges in operational numerical weather prediction at high resolution in complex terrain. Ph.D. thesis, ETH Zurich

  • Champollion C, Masson F, Bouin M-N, Walpersdorf A, Doerflinger E, Bock O, van Baelen J (2005) GPS water vapour tomography: preliminary results from the ESCOMPTE field experiment. Atmos Res 74: 253–274

    Article  Google Scholar 

  • Clark KM (2002) The use of computer modeling in estimating and managing future catastrophe losses. Geneva Papers Risk Insurance 27: 181–195

    Article  Google Scholar 

  • Clark P (2009) Issues with high-resolution NWP. MOSAC-14 14.6, UK MetOffice. 12–13 November

  • Dach, R, Hugentobler, U, Fridez, P, Meindl, M (eds) (2007) Bernese GPS Software Version 5.0. Astronomical Institute, University of Bern, Bern

    Google Scholar 

  • Dankers R, Feyen L, Chrstensen OB (2009) On the benefit of high-resolution climate simulations in impact studies of hydrological extremes. Hydrol Earth Syst Sci Discussions 6: 2573–2597

    Article  Google Scholar 

  • Falconer RH, Cobby D, Smyth P, Astle G, Dent J, Golding B (2009) Pluvial flooding: new approaches in flood warning, mapping and risk management. J. Flood Risk Manage. 2: 198–208

    Article  Google Scholar 

  • Flores A, de Arellano JV-G, Gradinarsky LP, Rius A (2001) Tomography of the lower troposphere using a small dense network of GPS receivers. IEEE Trans Geosci Remote Sensing 39(2): 439–447

    Article  Google Scholar 

  • Flores A, Gradinarsky LP, Elósegui P, Elgered G, Davis JL, Rius A (2000) Sensing atmospheric structure: tropospheric tomographic results of the small-scale GPS campaign at the Onsala Space Observatory. Earth Planets Space 52: 941–945

    Google Scholar 

  • Flores A, Ruffini G, Rius A (2000) 4D tropospheric tomography using GPS slant wet delays. Ann Geophys 18: 223–234

    Article  Google Scholar 

  • Fujiwara M, Shiotani M, Hasebe F, Voemel H, Oltmans SJ, Ruppert PW, Horinouchi T, Tsuda T (2003) Performance of the meteolabor Snow White chilled-mirror hygrometer in the tropical troposphere: Comparisons with the Vaisala RS80 A/H-Humicap sensors. J Atmos Oceanic Technol 20: 1534–1542

    Article  Google Scholar 

  • Gelb A (1974) Applied optimal estimation. MIT Press, Cambridge

    Google Scholar 

  • Gradinarsky LP, Jarlemark P (2004) Ground-based GPS tomography of water vapor: analysis of simulated and real data. J Meteor Soc Jpn 82(1B): 551–560

    Article  Google Scholar 

  • Hirahara K (2000) Local GPS tropospheric tomography. Earth Planets Space 52: 935–939

    Google Scholar 

  • Jacob D, Brring L, Christensen O, Christensen J, de Castro M, Dqu M, Giorgi F, Hagemann S, Hirschi M, Jones R, Kjellstrm E, Lenderink G, Rockel B, Snchez E, Schr C, Seneviratne S, Somot S, van Ulden A, van den Hurk B (2007) An inter-comparison of regional climate models for Europe: model performance in present-day climate. Clim Change 81:31–52. doi:10.1007/s10584-006-9213-4

    Google Scholar 

  • Jehle M, Perler D, Small D, Schubert A, Meier E (2008) Estimation of atmospheric path delays in TerraSAR-X data using models vs. measurements. Sensors 8(12): 8479–8491

    Article  Google Scholar 

  • Lutz S (2009) High-resolution GPS tomography in view of hydrological hazard assessment. Geodätisch-geophysikalische Arbeiten in der Schweiz. vol 76. Swiss Geodetic Commission

  • Lutz S, Troller M, Perler D, Geiger A, Kahle HG (2010) Better weather prediction using GPS. GPS World 21(7): 40–47

    Google Scholar 

  • Miloshevich LM, Voemel H, Paukkunen A, Heymsfield WJ, Oltmans SSJ (2001) Characterization and correction of relative humidity measurements from Vaisala RS80-A radiosondes at cold temperatures. J Atmos Oceanic Technol 18: 135–156

    Article  Google Scholar 

  • Nash J, Elms JB, Oakley TJ (1995) Relative humidity sensor performance observed in recent international radiosonde comparisons. In: Ninth AMS Symposium on Meteorological Observations and Instrumentation. Charlotte, North Carolina, pp 43–48

  • Niell AE (1996) Global mapping functions for the atmosphere delay at radio wavelengths. J Geophys Res 101: 3227–3246

    Article  Google Scholar 

  • Nilsson T (2005) Assessment of tomographic methods for estimation of atmospheric water vapor using ground-based GPS. Licentiate thesis, Chalmers University of Technology, Göteborg, Sweden

  • Nilsson T, Gradinarsky L (2006) Water vapor tomography using GPS phase observations: simulation results. IEEE Trans Geosci Remote Sensing 44(10): 2927–2941

    Article  Google Scholar 

  • Perler D (2011) Parameterized GPS-tomography for assimilation in numerical weather prediction models. Geodätisch-geophysikalische Arbeiten in der Schweiz. Swiss Geodetic Commission (in preparation)

  • Pilon PJ (2005) Guidelines for reducing flood losses. United Nations

  • Ranzi R, Bacchi B, Ceppi A, Cislaghi M, Ehret U, Jaun S, Marx A, Hegg C, Zappa M (2009) Real-time demonstration of hydrological ensemble forecasts in Map d-Phase. La Houille Blanche, pp 95–104

  • Rice JA (1995) Mathematical statistics and data analysis, 2 edn. Duxbury Press, North Scituate

    Google Scholar 

  • Rüeger JM (2002) Refractive index formulae for radio waves. In: Integration of techniques and corrections to achieve accurate engineering

  • Ruffini G, Flores A, Rius A (1998) GPS tomography of the ionospheric electron content with a correlation functional. IEEE Trans Geosci Remote Sensing 36(1)

  • Saastamoinen J (1972) Atmospheric correction for troposphere and stratosphere in radio ranging of satellites. In: Henriksen SW, Macini A, Chovitz BH (eds) The use of artificial satellites for geodesy. Geophysics monograph, vol 15. American Geophysical Union, Washington D.C., pp 247–251

    Google Scholar 

  • Schwarz HR (1997) Numerische Mathematik, 4 edn. Teubner, Stuttgart

    Google Scholar 

  • Stoer J, Bulirsch R (1980) Introduction to numerical analysis. Springer, New York

    Google Scholar 

  • Troller M (2004) GPS based determination of the integrated and spatially distributed water vapor in the troposphere. Geodätisch-geophysikalische Arbeiten in der Schweiz, vol 67. Swiss Geodetic Commission

  • Troller M, Bürki B, Cocard M, Geiger A, Kahle H-G (2002) 3-D refractivtiy field from GPS double difference tomography. Geophys Res Lett 29(24)

  • Troller M, Geiger A, Brockmann E, Kahle H-G (2006) Determination of the spatial and temporal variation of tropospheric water vapour using CGPS networks. Geophys J Int 167(2): 509–520

    Article  Google Scholar 

  • Troller M, Leuenberger D, Brockmann E, Geiger A, Kahle H-G (2007) GPS-tomography: results and analyses of the operational determination of humidity profiles over Switzerland. Geophys Res Abstr 9

  • Vömel H, Fujiwara M, Shiotani M, Hasebe F, Oltmans SJ, Barnes JE (2003) The behavior of the snow white chilled-mirror hygrometer in extremely dry conditions. J Atmos Oceanic Technol 20: 1560–1567

    Article  Google Scholar 

  • Wang J, Cole HL, Carlson DJ, Miller ER, Beierle K, Laine TK (2002) Corrections of humidity measurement errors from the Vaisala RS80 radiosonde—application to TOGA COARE data. J Atmos Oceanic Technol 19: 981–1002

    Article  Google Scholar 

  • Wanner H (1979) Zur Bildung, Verteilung und Vorhersage winterlicher Nebel im Querschnitt Jura–Alpen. Geogr. Bernensia 7, 240p G

  • WMO: (2008) Guide to meteorological instruments and methods of observation, 7th edn. World Meteorological Organization-8, Geneva

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donat Perler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perler, D., Geiger, A. & Hurter, F. 4D GPS water vapor tomography: new parameterized approaches. J Geod 85, 539–550 (2011). https://doi.org/10.1007/s00190-011-0454-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-011-0454-2

Keywords

Navigation