Extensions of the sequential stochastic assignment problem | Mathematical Methods of Operations Research Skip to main content
Log in

Extensions of the sequential stochastic assignment problem

  • Original Article
  • Published:
Mathematical Methods of Operations Research Aims and scope Submit manuscript

Abstract

The sequential stochastic assignment problem (SSAP) allocates N workers to N IID sequentially arriving tasks so as to maximize the expected total reward. This paper studies two extensions of the SSAP. The first one assumes that the values of any two consecutive tasks are dependent on each other while the exact number of tasks to arrive is unknown until after the final arrival. The second extension generalizes the first one by assuming that the number of workers is also random. Optimal assignment policies for both problems are derived and proven to have the same threshold structure as the optimal policy of the SSAP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albright SC (1974a) Optimal sequential assignment with random arrival times. Manag Sci 21(1):60–67

    Article  MATH  MathSciNet  Google Scholar 

  • Albright SC (1974b) A Markov-decision-chain approach to a stochastic assignment problem. Oper Res 22(1):61–64

    Article  MATH  MathSciNet  Google Scholar 

  • Albright SC (1976) A Markov chain version of the secretary problem. Nav Res Logist Q 23(1):153–159

    Article  MathSciNet  Google Scholar 

  • Albright SC (1977) A bayesian approach to a generalized house selling problem. Manag Sci 24(4):432–440

    Article  MATH  MathSciNet  Google Scholar 

  • Albright SC, Derman C (1972) Assymptotic optimal policies for stochastic sequential assignment problem. Manag Sci 19(1):46–51

    Article  MATH  MathSciNet  Google Scholar 

  • Baharian G, Jacobson SH (2013a) Limiting behavior of the stochastic sequential assignment problem. Nav Res Logist 60(4):321–330

    Article  MathSciNet  Google Scholar 

  • Baharian G, Jacobson SH (2013b) Stochastic sequential assignment problem with threshold criteria. Probab Eng Inf Sci 27(3):277–296

    Article  MATH  MathSciNet  Google Scholar 

  • Derman C, Lieberman GJ, Ross SM (1972) A sequential stochastic assignment problem. Manag Sci 18(7):349–355

    Article  MATH  MathSciNet  Google Scholar 

  • Derman C, Lieberman GJ, Ross SM (1975) A stochastic sequential allocation model. Oper Res 23(6):1120–1130

    Article  MATH  MathSciNet  Google Scholar 

  • Gershkov A, Moldovanu B (2010) Efficient sequential assignment with incomplete information. Games Econ Behav 68:144–154

    Article  MATH  MathSciNet  Google Scholar 

  • Hardy G, Littlewood J, Polya G (1959) Inequalities, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Kennedy DP (1986) Optimal sequential assignment. Math Oper Res 11(4):619–626

    Article  MATH  MathSciNet  Google Scholar 

  • Khatibi A, Baharian G, Kone ER, Jacobson SH (2014) The sequential stochastic assignment problem with random success rates. IIE Trans 46(11):1169–1180

    Article  Google Scholar 

  • McLay LA, Jacobson SH, Nikolaev AG (2009) A sequential stochastic passenger screening problem for aviation security. IIE Trans 41(6):575–591

    Article  Google Scholar 

  • Nakai T (1986) A sequential assignment problem in a partially observable Markov chain. Math Oper Res 11:230–240

    Article  MATH  MathSciNet  Google Scholar 

  • Nikolaev AG, Jacobson SH (2010) Stochastic sequential decision-making with a random number of jobs. Oper Res 54(4P1):1023–1027

  • Nikolaev AG, Jacobson SH, McLay LA (2007) A sequential stochastic seceurity system design problem for aviation security. Transp Sci 41(2):182–194

    Article  Google Scholar 

  • Righter RL (1987) The stochastic sequential assignment problem with random deadlines. Probab Eng Inf Sci 1:189–202

    Article  MATH  Google Scholar 

  • Su X, Zenios SA (2005) Patient choice in kidney allocation: a sequential stochastic assignment model. Oper Res 53(3):443–455

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research has been supported in part by the Air Force Office of Scientific Research under Grant No. \(FA9550-15-1-0100\). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the United States Government, or the Air Force Office of Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Khatibi.

Appendix: Proofs

Appendix: Proofs

Proof of Lemma 6

Using an approach analogous to that applied in equation (3.6) of Kennedy (1986), one can obtain

$$\begin{aligned} {1 \over \alpha } \sum _{i=1}^{M}p_{\pi (i,n)}\big \vert \bar{Z}_{i,n}^{(1)} \big \vert \le {1 \over \alpha } \left( \sum _{i=1}^{+\infty } p_{i} \right) E\left[ \sup _{r \ge n} X_{r} \big \vert X_{n} \right] , \end{aligned}$$
(57)

for any \(M \ge 1\) and \(n \ge 1\), implying that

$$\begin{aligned} \big \vert F^{\pi }_{n} \big \vert \le \sum _{r=1}^{n-1} p_{\pi _{r}}X_{r} + {1 \over \alpha } \sum _{i=1}^{+\infty }p_{\pi (i,n)}\big \vert \bar{Z}_{i,n}^{(1)} \big \vert \le \left( \sum _{i=1}^{+\infty } p_{i} \right) \left( \sup _{r} X_{r} + {1 \over \alpha } E\left[ \sup _{r \ge n} X_{r} \big \vert X_{n} \right] \right) , \end{aligned}$$
(58)

and hence,

$$\begin{aligned} E\left[ \big \vert F^{\pi }_{n} \big \vert \right]\le & {} \left( \sum _{i=1}^{+\infty } p_{i} \right) \left( E\left[ \sup _{r} X_{r} \right] + {1 \over \alpha } E\left[ E\left[ \sup _{r \ge n} X_{r} \big \vert X_{n}\right] \right] \right) \nonumber \\\le & {} \left( \sum _{i=1}^{+\infty } p_{i} \right) \left( E\left[ \sup _{r} X_{r} \right] + {1 \over \alpha } E\left[ E\left[ \sup _{r} X_{r} \big \vert X_{n} \right] \right] \right) \nonumber \\= & {} \left( \sum _{i=1}^{+\infty } p_{i} \right) \left( E\left[ \sup _{r} X_{r} \right] + {1 \over \alpha }E\left[ \sup _{r} X_{r} \right] \right) \nonumber \\= & {} \left( 1+{1 \over \alpha }\right) \left( \sum _{i=1}^{+\infty } p_{i} \right) E\left[ \sup _{r} X_{r} \right] , \end{aligned}$$
(59)

for any \(n \ge 1\) which results in

$$\begin{aligned} \sup _{n}E\left[ \big \vert F^{\pi }_{n} \big \vert \right] < +\infty , \end{aligned}$$
(60)

by (33) and the assumption that \(\sum _{i=1}^{+\infty }p_{i}<+\infty \). Now, observe that

$$\begin{aligned} E\left[ F^{\pi }_{n+1} \big \vert X_{n},\ldots ,X_{1} \right] =&\sum _{r=1}^{n}p_{\pi _{r}}X_{r}+E\left[ {1 \over \alpha }\sum _{i=1}^{+\infty }p_{\pi (i,n+1)}\bar{Z}^{(1)}_{i,n+1} \big \vert X_{n},\ldots ,X_{1} \right] \nonumber \\ =&\sum _{r=1}^{n-1}p_{\pi _{r}}X_{r}+p_{\pi _{n}}X_{n}+\sum _{i=1}^{+\infty }p_{\pi (i,n+1)}\nonumber \\&E\left[ {1 \over \alpha }\bar{Z}^{(1)}_{i,n+1} \big \vert X_{n},X_{n-1},\ldots ,X_{1} \right] \nonumber \\ =&\sum _{r=1}^{n-1}p_{\pi _{r}}X_{r}+p_{\pi _{n}}X_{n}+\sum _{i=1}^{+\infty }p_{\pi (i,n+1)} E\left[ {1 \over \alpha }\bar{Z}^{(1)}_{i,n+1} \big \vert X_{n} \right] , \end{aligned}$$
(61)

where the second equality follows from (57) and the last equality is obtained since

$$\begin{aligned} E\left[ {1 \over \alpha }\bar{Z}^{(1)}_{i,n+1} \big \vert X_{n}, X_{n-1},\ldots ,X_{1} \right]= & {} \lim _{N \rightarrow +\infty }E\left[ {1 \over \alpha }Z^{(1),N}_{i,n+1} \big \vert X_{n},X_{n-1},\ldots ,X_{1} \right] \nonumber \\= & {} \lim _{N \rightarrow +\infty }E\left[ {1 \over \alpha }Z^{(1),N}_{i,n+1} \big \vert X_{n} \right] \nonumber \\= & {} E\left[ {1 \over \alpha }\bar{Z}^{(1)}_{i,n+1} \big \vert X_{n} \right] , \end{aligned}$$
(62)

where the first and the last equalities follow from the dominated convergence theorem and the second one is a direct result of the way \(\left\{ Z^{(1),N}_{m,n}\right\} \) and \(\left\{ Z^{(2),N}_{m,n}\right\} \) are defined in (9) and (10). Note that by Lemma 4 and the dominated convergence theorem,

$$\begin{aligned} E\left[ {1 \over \alpha } \bar{Z}_{i,n+1}^{(1)} \big \vert X_{n}\right] =E\left[ \bar{Z}_{i,n+1}^{(1)} \big \vert X_{n+1}>0,X_{n}\right] + \bar{Z}_{i,n+1}^{(2)}, \end{aligned}$$
(63)

for \(i=1,2,\ldots \), and observe that \(\left\{ {1 \over \alpha }\bar{Z}^{(1)}_{i,n}, i=1,2,\ldots \right\} \) is the set of ordered values of

$$\begin{aligned} \left\{ X_{n}, \left( E\left[ \bar{Z}^{(1)}_{i,n+1} \big \vert X_{n+1}>0,\,X_{n}\right] +\bar{Z}^{(2)}_{i,n+1}\right) , i=1,2,\ldots \right\} , \end{aligned}$$
(64)

which, by the extension of Lemma 3 (Hardy’s Theorem) to the infinite-support case (see Kennedy (1986)), implies that

$$\begin{aligned} E\left[ F^{\pi }_{n+1} \big \vert X_{n},X_{n-1},\ldots ,X_{1} \right] \le \sum _{r=1}^{n-1}p_{\pi _{r}}X_{r}+{1 \over \alpha }\sum _{i=1}^{+\infty }p_{\pi (i,n)} \bar{Z}^{(1)}_{i,n} = F^{\pi }_{n}. \end{aligned}$$
(65)

By Doob’s forward convergence theorem, (60) and (65) indicate that the super Martingale \(\left\{ F^{\pi }_{n}: n\ge 1 \right\} \) converges almost surely to a finite limit \(F^{\pi }_{\infty }\) as \(n \rightarrow +\infty \), where

$$\begin{aligned} F^{\pi }_{\infty }=\sum _{r=1}^{+\infty }p_{\pi _{r}}X_{r} \end{aligned}$$
(66)

since

$$\begin{aligned} \lim _{n \rightarrow +\infty }{1 \over \alpha } \sum _{i=1}^{+\infty }p_{\pi (i,n)}\big \vert \bar{Z}_{i,n}^{(1)} \big \vert =0 \end{aligned}$$
(67)

by (57), (33), and the assumption that \(\sum _{i=1}^{+\infty }p_{i} <+\infty \). Recall from (58) that

$$\begin{aligned} \big \vert F^{\pi }_{n} \big \vert \le \left( \sum _{i=1}^{+\infty } p_{i} \right) \left( \sup _{r} X_{r} + {1 \over \alpha } E\left[ \sup _{r \ge n} X_{r} \big \vert X_{n}, \right] \right) , \end{aligned}$$
(68)

for any \(n \ge 1\), where the expected value of the right-hand side of (68) is finite, and hence, \(\left\{ F^{\pi }_{n}: n\ge 1 \right\} \) is uniformly integrable, which along with (65) yields

$$\begin{aligned} E\left[ F^{\pi }_{\infty } \big \vert X_{n},X_{n-1},\ldots ,X_{1} \right] \le F^{\pi }_{n}. \end{aligned}$$
(69)

\(\square \)

Proof of Theorem 2

Using Lemma 6 and an approach similar to that applied in the final part of Section 3 in Kennedy (1986), the optimal assignment policy is derived as follows. For any fixed \(\pi \in \pi \mid _{1}\) and an arbitrary policy \(\phi \in \pi \mid _{n}\), by Lemma 6,

$$\begin{aligned} F^{\pi }_{n}=F^{\phi }_{n} \ge E\left[ \sum _{r=1}^{+\infty }p_{\phi _{r}}X_{r} \big \vert X_{n},X_{n-1},\ldots ,X_{1} \right] \end{aligned}$$

Therefore,

$$\begin{aligned} F^{\pi }_{n} \ge R^{\pi }_{n}, \end{aligned}$$
(70)

for any \(\pi \in \pi \mid _{1}\) and \(n \ge 1\). In addition, note that under policy \(\bar{\pi }\), (65) becomes

$$\begin{aligned} E\left[ F^{\bar{\pi }}_{n+1} \big \vert X_{n},X_{n-1},\ldots ,X_{1} \right] = F^{\bar{\pi }}_{n}, \end{aligned}$$
(71)

which leads to

$$\begin{aligned} F^{\bar{\pi }}_{1}=E\left[ F^{\bar{\pi }}_{\infty } \big \vert X_{1} \right] =E\left[ \sum _{r=1}^{+\infty }p_{\bar{\pi }_{r}}X_{r} \big \vert X_{1} \right] \ge R^{\bar{\pi }}_{1}, \end{aligned}$$
(72)

where the inequality follows from (70). Recall that \(R^{\bar{\pi }}_{1}\) is the optimal expected total reward by definition; therefore, (72) implies that \(\bar{\pi }\) is the optimal policy. Moreover, the optimal expected total reward under \(\bar{\pi }\) is equal to

$$\begin{aligned} F^{\bar{\pi }}_{1}={1 \over \alpha }\sum _{i=1}^{+\infty }p_{\bar{\pi }(i,1)}\bar{Z}^{(1)}_{i,1}, \end{aligned}$$
(73)

from (72) and the definition of \(F^{\pi }_{n}\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khatibi, A., Baharian, G., Behzad, B. et al. Extensions of the sequential stochastic assignment problem. Math Meth Oper Res 82, 317–340 (2015). https://doi.org/10.1007/s00186-015-0516-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00186-015-0516-y

Keywords

Navigation