Rulesets for Beatty games | International Journal of Game Theory
Skip to main content

Rulesets for Beatty games

  • Original Paper
  • Published:
International Journal of Game Theory Aims and scope Submit manuscript

Abstract

We describe a ruleset for a 2-pile subtraction game with P-positions \(\{(\lfloor \alpha n \rfloor ,\lfloor \beta n \rfloor ) : n \in \mathbb Z_{\ge 0} \}\) for any irrational \(1< \alpha < 2\), and \(\beta \) such that \(1/\alpha +1/\beta = 1\). We determine the \(\alpha \)’s for which the game can be represented as a finite modification of t-Wythoff (Holladay, Math Mag 41:7–13, 1968; Fraenkel, Am Math Mon 89(6):353–361, 1982) and describe this modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Beatty S (1926) Problem 3173. Am Math Mon 33:159

    Article  Google Scholar 

  • Cassaigne J, Duchêne E, Rigo M (2016) Nonhomogeneous Beatty sequences leading to invariant games. SIAM J Discrete Math 30:1798–1829

    Article  Google Scholar 

  • Coxeter HSM (1953) The golden section, phyllotaxis and Wythoff’s game. Scr Math 19:135–143

    Google Scholar 

  • Duchêne E, Fraenkel AS, Nowakowski RJ, Rigo M (2010) Extensions and restrictions of Wythoff’s game preserving its \({P}\)-positions. J Combin Theory Ser A 117:545–567

    Article  Google Scholar 

  • Duchêne E, Parreau A, Rigo M (2017) Deciding game invariance. Inf Comput 253:127–142

    Article  Google Scholar 

  • Duchêne E, Rigo M (2010) Invariant games. Theor Comput Sci 411(34–36):3169–3180

    Article  Google Scholar 

  • Erdös P, Graham RL (1980) Old and new problems and results in combinatorial number theory. Université de Genéve, L’Enseignement Mathématique, Geneva

    Google Scholar 

  • Fisher MJ, Larsson U (2011) Chromatic Nim finds a game for your solution. Cambridge University Press, Cambridge. To appear in: Larsson U (ed) Games of no chance 5, Proceedings of BIRS workshop on combinatorial games, vol 70, 2011, Banff, MSRI Publications

  • Fraenkel AS (1982) How to beat your Wythoff games’ opponent on three fronts. Am Math Mon 89(6):353–361

    Article  Google Scholar 

  • Fraenkel AS (2013) Beating your fractional Beatty game opponent and: what’s the question to your answer? In: Advances in combinatorics, vol 63. Springer, Berlin. In Memory of Herbert S. Wilf, Proceedings of Waterloo workshop on computer algebra, 2011, IS Kotsireas and EV Zima (eds)

  • Fraenkel AS (2015) The rat game and the mouse game. In: Nowakowski RJ (ed) Games of no chance 4, Proceedings of BIRS workshop on combinatorial games, 2008, Banff, vol 63. MSRI Publ., Cambridge University Press, Cambridge

    Google Scholar 

  • Fraenkel AS, Larsson U (2011) Take-away games and the notion of \(k\)-invariance. Cambridge University Press, Cambridge. To appear in: Larsson U (ed) Games of no chance 5, Proceedings of BIRS workshop on combinatorial games, vol 70, 2011, Banff. MSRI Publications

  • Fraenkel AS, Larsson U (2017) Games on arbitrarily large rats and playability (preprint)

  • Goldberg L, Fraenkel AS (2013)Extensions of Wythoff’s game (preprint)

  • Golomb SW (1966) A mathematical investigation of games of “take-away”. J Combin Theory 1(4):443–458

    Article  Google Scholar 

  • Hardy GH, Wright EM (2008) An introduction to the theory of numbers, 6th edn. Oxford University Press, Oxford

    Google Scholar 

  • Ho NB (2012) Two variants of Wythoff’s game preserving its \({P}\)-positions. J Combin Theory Ser A 119:1302–1314

    Article  Google Scholar 

  • Holladay JC (1968) Some generalizations of Wythoff’s game and other related games. Math Mag 41:7–13

    Article  Google Scholar 

  • Larsson U (2012) The \(\star \)-operator and invariant subtraction games. Theor Comput Sci 422:52–58

    Article  Google Scholar 

  • Larsson U, Hegarty P, Fraenkel AS (2011) Invariant and dual subtraction games resolving the Duchêne–Rigo conjecture. Theor Comput Sci 412(8–10):729–735

    Article  Google Scholar 

  • Larsson U, Weimerskirch M (2013) Impartial games whose rulesets produce given continued fractions (arXiv preprint). arXiv:1302.0271

  • Wythoff WA (1907) A modification of the game of Nim. Nieuw Arch Wiskd 7:199–202

    Google Scholar 

  • Yaglom AM, Yaglom IM (1967) Challenging mathematical problems with elementary solutions., vol II. Holden-Day, San Francisco (translated by J. McCawley, Jr., revised and edited by B. Gordon)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aviezri S. Fraenkel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goldberg, L., Fraenkel, A.S. Rulesets for Beatty games. Int J Game Theory 47, 577–594 (2018). https://doi.org/10.1007/s00182-017-0594-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00182-017-0594-6

Keywords