The uncertainties about the relationships risk–return–volatility in the Spanish stock market | Computational Statistics Skip to main content
Log in

The uncertainties about the relationships risk–return–volatility in the Spanish stock market

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

The relationships between the market risk premium, its conditional variance and the risk-free rate in the Spanish stock market are studied in this paper. Using daily data, the above mentioned relations are analyzed by quasi maximum likelihood for an EGARCH-M(1,1) model with normal innovations and by nonparametric maximum likelihood for a semiparametric EGARCH-M(1,1) model with arbitrarily distributed innovations. It is worth mentioning that the conclusions differ from one model to the other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alcalá JT, Bachiller A, Olave P (1993) Prima de Riesgo y Volatilidad en el Mercado de Valores Español. Revista de Economía Aplicada 3(1): 95–117

    Google Scholar 

  • Alonso F, Restoy F (1995) La remuneración de la volatilidad en el mercado español de renta variable. Moneda y Crédito. 200: 95–132

    Google Scholar 

  • Aggarwal R, Schatzberg JD (1997) Day of the week effects, information seasonality, and higher moments of security returns. J Econ Bus 49: 1–20

    Article  Google Scholar 

  • Berndt E, Hall B, Hall R, Hausman J (1974) Estimation and inference in nonlinear structural models. Ann Econ Soc Meas 3: 653–665

    Google Scholar 

  • Bollerslev T (1986) Generalized autoregressive conditional heteroskedasticity. J Econom 31: 307–327

    Article  MATH  MathSciNet  Google Scholar 

  • Bollerslev T, Chou RY, Kroner KF (1992) ARCH modelling in finance. J Econom 52: 5–59

    Article  MATH  Google Scholar 

  • Bollerslev T, Wooldridge JM (1992) Quasi-maximum likelihood estimation and inference in dynamic models with time-varying covariances. Econom Rev 11(2): 143–172

    Article  MATH  MathSciNet  Google Scholar 

  • Breen W, Glosten L, Jagannathan R (1989) Economic significance of predictable variations in stock index returns. J Finance 45(5): 1177–1189

    Article  Google Scholar 

  • Campbell JY (1987) Stock returns and the term structure. J Financ Econ 18: 373–399

    Article  Google Scholar 

  • Cao R (1993) Bootstrapping the mean integrated squared error. J Multivar Anal 45: 137–160

    Article  MATH  Google Scholar 

  • Cao R, Febrero-Bande M, González-Manteiga W, Prada-Sánchez JM, García-Jurado I (1997) Saving computer time in constructing consistent bootstrap prediction intervals for autoregressive processes. Commun Stat Simul Comput 26: 961–978

    Article  MATH  Google Scholar 

  • Cao R, Hart J, Saavedra A (2003) Nonparametric maximum likelihood estimators for AR and MA time series. J Stat Comput Simul 73: 347–360

    Article  MATH  MathSciNet  Google Scholar 

  • Chou RJ, Engle RF, Kane A (1992) Measuring risk aversion from excess returns on a stock index. J Econom 52: 201–224

    Article  Google Scholar 

  • Christie AA (1982) The stochastic behavior of common stock variances. J Financ Econ 10: 407–432

    Article  Google Scholar 

  • Demos A, Sentana E (1998) Testing for GARCH effects: a one sided approach. J Econom 86: 97–127

    Article  MATH  Google Scholar 

  • Engle RF, Bollerslev T (1986) Modelling the persistence of conditional variances. Econom Rev 5(1): 1–47

    Article  MATH  MathSciNet  Google Scholar 

  • Engle RF, González G (1991) Semiparametric ARCH models. J Bus Econ Stat 9(4): 345–359

    Article  Google Scholar 

  • Engle RF, Lilien DM, Robins RP (1987) Estimating time varying risk premia in the term structure: the ARCH-M model. Econometrica 55(2): 391–407

    Article  Google Scholar 

  • Engle RF, Ng VK, Rothschild M (1990) Asset pricing with a factor arch covariance structure Empirical estimates for treasury bills. J Econom 45: 213–237

    Article  Google Scholar 

  • Fama EF, Schwert GW (1977) Asset returns and inflation. J Financ Econ 5: 115–146

    Article  Google Scholar 

  • French KR, Schwert G, William S, Robert F (1987) Expected stock returns and volatility. J Financ Econ 19: 3–29

    Article  Google Scholar 

  • Girard E, Rahman H, Zaher T (2001) Intertemporal risk–return relationship in the Asian markets around the Asian crisis. Financ Serv Rev 10(1–4): 249–272

    Article  Google Scholar 

  • Glosten LR, Jagannathan R, Runkle DE (1993) On the relation between the expected value and the volatility of the nominal excess returns on stocks. J Finance 48(5): 1779–1801

    Article  Google Scholar 

  • Harvey CR (1989) Time varying conditional covariances in tests of asset pricing models. J Financ Econ 24: 289–317

    Article  Google Scholar 

  • Lobo BJ (2000) Asymmetric effects of interest rate changes on stock prices. Financ Rev 35: 125–144

    Article  Google Scholar 

  • Nelson DB (1991) Conditional heteroskedasticity in asset returns: a new approach. Econometrica 59: 347–370

    Article  MATH  MathSciNet  Google Scholar 

  • Scruggs JT (1998) Resolving the puzzling intertemporal relation between the market risk premium and conditional market variance: a two factor approach. J Finance 53(2): 575–603

    Article  Google Scholar 

  • Sentana E (1995) Quadratic ARCH models. Rev Econ Stud 62: 639–661

    Article  MATH  Google Scholar 

  • Sentana E (1997) Risk and return in the spanish stock market: some evidence from individual assets. Investigaciones Económicas 21(2): 297–359

    Google Scholar 

  • Sentana E (1998) The relation between conditionally heteroskedastic factor models and factor garch models. Econom J 1: 1–9

    Article  MATH  Google Scholar 

  • Sentana E (2004) Factor representing portfolios in large asset markets Dynamic factor models. J Econom 119: 257–289

    Article  MathSciNet  Google Scholar 

  • Sentana E, Fiorentini G (2001) Identification, estimation and testing of conditionally heteroskedastic factor models. J Econom 102: 143–164

    Article  MATH  MathSciNet  Google Scholar 

  • Shanken J (1990) Intertemporal asset pricing an empirical investigation. J Econom 45: 99–120

    Article  Google Scholar 

  • Silverman BW (1986) Density estimation for statistics and data analysis. Chapman and Hall, London

    MATH  Google Scholar 

  • Turner CM, Startz R, Nelson CR (1989) A Markov model of heteroskedasticity, risk, and learning in the stock market. J Financ Econ 25: 3–22

    Article  Google Scholar 

  • Whitelaw R (2000) Stock market risk and return: an equilibrium approach. Rev Financ Stud 13(3): 521–547

    Article  Google Scholar 

  • Zheng C (1997) ModGA: a modular genetic algorithm based flow and transport optimization model for MODFLOW and MT3D Report to DuPont Chemical

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angeles Saavedra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, R., de las Heras, A. & Saavedra, A. The uncertainties about the relationships risk–return–volatility in the Spanish stock market. Comput Stat 24, 113–126 (2009). https://doi.org/10.1007/s00180-008-0141-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-008-0141-9

Keywords

Navigation