Bootstrap for estimating the MSE of the Spatial EBLUP | Computational Statistics
Skip to main content

Bootstrap for estimating the MSE of the Spatial EBLUP

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

This work assumes that the small area quantities of interest follow a Fay–Herriot model with spatially correlated random area effects. Under this model, parametric and nonparametric bootstrap procedures are proposed for estimating the mean squared error of the empirical best linear unbiased predictor (EBLUP). A simulation study based on the Italian Agriculture Census 2000 compares bootstrap and analytical estimates of the MSE and studies their robustness to non-normality. Results indicate lower bias for the non-parametric bootstrap under specific departures from normality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anselin L (1988) Spatial econometrics. Methods and models. Kluwer, Boston

    Google Scholar 

  • Banerjee S, Carlin B, Gelfand A (2004) Hierarchical modeling and analysis for spatial data. Chapman and Hall, New York

    MATH  Google Scholar 

  • Cressie N (1991) Small-area prediction of undercount using the general linear model. In: Proceedings of statistic symposium 90: measurement and improvement of data quality, Statistics Canada, Ottawa, pp 93–105

  • Cressie N (1993) Statistics for spatial data. Wiley, New York

    Google Scholar 

  • Fay R, Herriot R (1979) Estimates of income for small places: an application of James–Stein procedures to census data. J Am Stat Assoc 74: 269–277

    Article  MathSciNet  Google Scholar 

  • Ghosh M, Rao JNK (1994) Small area estimation: an appraisal. Stat Sci 9: 55–76 (discussion 76–93)

    Article  MATH  MathSciNet  Google Scholar 

  • González-Manteiga W, Lombardía M, Molina I, Morales D, Santamaría L (2007) Estimation of the mean squared error of predictors of small area linear parameters under logistic mixed model. Comput Stat Data Anal 51: 2720–2733

    Article  MATH  Google Scholar 

  • González-Manteiga W, Lombardía M, Molina I, Morales D, Santamaría L (2008) Analytic and bootstrap approximations of prediction errors under a multivariate Fay–Herriot model. Comput Stat Data Anal 52: 5242–5252

    Article  MATH  Google Scholar 

  • Griffith D, Csillag F (1993) Exploring relationships between semi-variogram and spatial autoregressive. Papers Reg Sci 72: 283–296

    Article  Google Scholar 

  • Hall P, Maiti T (2006a) Nonparametric estimation of mean-squared prediction error in nested-error regression models. Ann Stat 34: 1733–1750

    Article  MathSciNet  Google Scholar 

  • Hall P, Maiti T (2006b) On parametric bootstrap methods for small area prediction. J R Stat Soc Ser B 68: 221–238

    Article  MATH  MathSciNet  Google Scholar 

  • Harville D, Jeske D (1992) Mean squared error of estimation or prediction under a general linear model. J Am Stat Assoc 87: 724–731

    Article  MATH  MathSciNet  Google Scholar 

  • Jiang J, Lahiri P (2002) A unified jacknife theory for empirical best prediction with m-estimation. Ann Stat 30: 2720–2733

    MathSciNet  Google Scholar 

  • Jiang J (1996) REML estimation: asymptotic behavior and related topics. Ann Stat 24: 255–286

    Article  MATH  Google Scholar 

  • Petrucci A, Salvati N (2006) Small area estimation for spatial correlation in watershed erosion assessment. J Agric Biol Environ Stat 11: 169–182

    Article  Google Scholar 

  • Pfeffermann D, Tiller R (2005) Bootstrap approximation to prediction MSE for state-space models with estimated parameters. J Time Ser Anal 26: 893–916

    Article  MATH  MathSciNet  Google Scholar 

  • Prasad N, Rao J (1990) The estimation of the mean squared error of small-area estimators. J Am Stat Assoc 85: 163–171

    Article  MATH  MathSciNet  Google Scholar 

  • Pratesi M, Salvati N (2008) Small area estimation: the EBLUP estimator based on spatially correlated random area effects. Stat Methods Appl 17: 113–141

    Article  MATH  MathSciNet  Google Scholar 

  • Singh B, Shukla G, Kundu D (2005) Spatio-temporal models in small area estimation. Surv Methodol 31: 183–195

    MATH  Google Scholar 

  • Ugarte MD, Militino AF, Goicoa T (2008) Prediction error estimators in Empirical Bayes disease mapping. Environmetrics 19: 287–300

    Article  Google Scholar 

  • Zimmerman D, Cressie N (1992) Mean squared prediction error in the spatial linear model with estimated covariance parameters. Ann Inst Stat Math 44: 27–43

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Molina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molina, I., Salvati, N. & Pratesi, M. Bootstrap for estimating the MSE of the Spatial EBLUP. Comput Stat 24, 441–458 (2009). https://doi.org/10.1007/s00180-008-0138-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-008-0138-4

Keywords

Mathematics Subject Classification (2000)