MARS: selecting basis functions and knots with an empirical Bayes method | Computational Statistics Skip to main content
Log in

MARS: selecting basis functions and knots with an empirical Bayes method

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

An empirical Bayes method to select basis functions and knots in multivariate adaptive regression spline (MARS) is proposed, which takes both advantages of frequentist model selection approaches and Bayesian approaches. A penalized likelihood is maximized to estimate regression coefficients for selected basis functions, and an approximated marginal likelihood is maximized to select knots and variables involved in basis functions. Moreover, the Akaike Bayes information criterion (ABIC) is used to determine the number of basis functions. It is shown that the proposed method gives estimation of regression structure that is relatively parsimonious and more stable for some example data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaike H (1980) Likelihood and Bayes procedure. In: Bernardo JM et al (eds) Bayesian statistics. University Press, Valencia, pp 143–166

    Google Scholar 

  • Brown BW, Hu MSJ (1980) Setting dose levels for the treatment of testicular cancer. In: Miller RG et al (eds) Biostatistics casebook. Wiley, New York, pp 113–152

    Google Scholar 

  • Breiman L, Friedman JH, Olshen R, Stone CJ (1983) Classification and regression trees. Wadsworth, California

    Google Scholar 

  • le Cessie S, van Houwelingen JC (1992) Ridge estimators in logistic regression. Appl Stat 41:191–201

    Article  MATH  Google Scholar 

  • Chambers JM, Hastie TJ (1992) Statistical models in S. Pacific Grove, California

    MATH  Google Scholar 

  • Craven P, Wahba G (1979) Smoothing noisy data with spline functions. Numer Math 31:377–403

    Article  MATH  MathSciNet  Google Scholar 

  • Davison AC (1986) Approximate predictive likelihood. Biometrika 73:323–332

    Article  MATH  MathSciNet  Google Scholar 

  • Denison DGT, Holmes CC, Mallick BK, Smith AFM (2002) Bayesian methods for nonlinear classification and regression. Wiley, New York

    MATH  Google Scholar 

  • Friedman JH (1991) Multivariate adaptive regression splines (with discussion). Ann Stat 19:1–141

    MATH  Google Scholar 

  • Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat 29:1189–1232

    Article  MATH  Google Scholar 

  • Friedman JH, Silverman BW (1989) Flexible parsimonious smoothing and additive modeling. Technometrics 31:3–39

    Article  MATH  MathSciNet  Google Scholar 

  • Good IJ (1965) The estimation of probabilities: an essay on modern Bayesian methods. MIT Press, Cambridge

    MATH  Google Scholar 

  • Green PJ (1995) Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82:711–732

    Article  MATH  MathSciNet  Google Scholar 

  • Green PJ, Silverman BW (1994) Nonparametric regression and generalized linear models. Chapman and Hall, London

    MATH  Google Scholar 

  • Harrison D, Rubinfeld DL (1978) Hedonic prices and the demand for clean air. J Environ Econ Manage 5:81–102

    Article  MATH  Google Scholar 

  • Hoerl AE, Kennard RW (1971) Ridge regression: biased estimates for nonorthogonal problems. Technometrics 12:55–67

    Article  Google Scholar 

  • Hastie T, Tibshirani R (1990) Generalized additive models. Chapman and Hall, London

    MATH  Google Scholar 

  • Hastie T, Tibshirani R (2000) Bayesian backfitting. Stat Sci 15:196–223

    Article  MATH  MathSciNet  Google Scholar 

  • Lin X, Zhang D (1999) Inference in generalized additive mixed models by using smoothing splines. J R Stat Soc B 61:381–400

    Article  MATH  MathSciNet  Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized linear models, 2nd edn. Chapman and Hall, London

    MATH  Google Scholar 

  • O’Sullivan F, Yandell BS, Raynor WJ (1986) Automatic smoothing of regression functions in generalized linear models. J Am Stat Assoc 81:96–103

    Article  MathSciNet  Google Scholar 

  • Salford Systems (2001) MARS User’s Guide.

  • Simonoff JS (1996) Smoothing methods in statistics. Springer, New York

    MATH  Google Scholar 

  • Tierney L, Kadane JB (1986) Accurate approximations for posterior moments and marginal densities. J Am Stat Assoc 81:82–86

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wataru Sakamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakamoto, W. MARS: selecting basis functions and knots with an empirical Bayes method. Computational Statistics 22, 583–597 (2007). https://doi.org/10.1007/s00180-007-0075-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-007-0075-7

Keywords

Navigation