Abstract
Single-point incremental forming has potential applications in prototyping and custom part manufacture for a range of industries including automotive and aerospace. For components with vertical walls, multiple passes are required to achieve a reasonable residual strain distribution and to accommodate large material strains without failure. In this paper, various multistage strategies were evaluated experimentally, and a complex C-channel fixture designed for aircraft vibration testing was successfully manufactured. Design guidelines for flat-base geometries are provided along with the rules for high-quality toolpath generation. A separate set of experiments was conducted comparing hemispherical and flat tools, and a flat tool was selected as being the most suitable for flat-base parts. The typical thickness variation developed in components and a geometrical error analysis are also presented. The response of the developed component to annealing and effect of this process on final geometrical errors are also reported. Cost analyses from design to development stage of the component are also presented. This work will be of practical interest to anyone seeking to bridge the gap between prototyping and large-scale production for complex flat-bottomed part geometries with single-point incremental forming.
Similar content being viewed by others
References
Adams D (2013) Improvements on single point incremental forming through electrically assisted forming, contact area prediction and tool development. Ph.D. thesis, Queen’s University
Adams D, Jeswiet J (2014) Design rules and applications of single-point incremental forming. Proc Inst Mech Eng B J Eng Manuf 229(5):754–760. https://doi.org/10.1177/0954405414531426 . http://pib.sagepub.com/content/229/5/754.abstract
Afonso D, de Sousa RA, Torcato R (2017) Incremental forming of tunnel type parts. In: Procedia Engineering, vol 183. Elsevier, pp 137–142. https://doi.org/10.1016/j.proeng.2017.04.036. http://www.sciencedirect.com/science/article/pii/S1877705817315412
Ambrogio G, Cozza V, Filice L, Micari F (2007) An analytical model for improving precision in single point incremental forming. J Mater Process Technol 191(1-3):92–95. https://doi.org/10.1016/J.JMATPROTEC.2007.03.079. https://www.sciencedirect.com/science/article/pii/S0924013607002853
Ambrogio G, Filice L, Gagliardi F, Micari F (2005) Three-dimensional FE simulation of single point incremental forming: experimental evidences and process design improving. In: Proceedings of the eighth. http://congress.cimne.upc.es/complas05/admin/Files/FilePaper/p69.pdf
Ambrogio G, Filice L, Manco GL (2008) Warm incremental forming of magnesium alloy AZ31. CIRP Ann Manuf Technol 57(1):257–260. https://doi.org/10.1016/j.cirp.2008.03.066. http://www.sciencedirect.com/science/article/pii/S0007850608001054
Ambrogio G, Sgambitterra E, De Napoli L, Gagliardi F, Fragomeni G, Piccininni A, Gugleilmi P, Palumbo G, Sorgente D, La Barbera L, Villa TM (2017) Performances analysis of titanium prostheses manufactured by superplastic forming and incremental forming. In: Procedia Engineering, vol 183. Elsevier, pp 168–173. https://doi.org/10.1016/j.proeng.2017.04.057. http://www.sciencedirect.com/science/article/pii/S187770581731562X
Bambach M, Taleb Araghi B, Hirt G (2009) Strategies to improve the geometric accuracy in asymmetric single point incremental forming. Production Engineering. https://doi.org/10.1007/s11740-009-0150-8
Behera AK, de Sousa RA, Ingarao G, Oleksik V (2017) Single point incremental forming: an assessment of the progress and technology trends from 2005 to 2015. https://doi.org/10.1016/j.jmapro.2017.03.014. http://www.sciencedirect.com/science/article/pii/S1526612517300713.
Cawley B, Adams D, Jeswiet J (2013) Examining tool shapes in single point incremental forming. Proc NAMRI/SME 41. https://www.researchgate.net/publication/283014953_Examining_tool_shapes_in_single_point_incremental_forming
Cerro I, Maidagan E, Arana J, Rivero A, Rodríguez P (2006) Theoretical and experimental analysis of the dieless incremental sheet forming process. J Mater Process Technol 177(1-3):404–408. https://doi.org/10.1016/j.jmatprotec.2006.04.078. http://www.sciencedirect.com/science/article/pii/S0924013606004511
Chamberlain DA, Mechefske CK (2017) Experimental modal analysis of a half-scale model twin-engine aircraft rear fuselage engine mount support frame. In: 29th conference on mechanical vibration and noise, vol 8. ASME, p V008T12A008. https://doi.org/10.1115/DETC2017-67389. http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?
Duflou J, Callebaut B, Verbert J, De Baerdemaeker H (2007) Laser assisted incremental forming: formability and accuracy improvement. CIRP Ann Manuf Technol 56(1):273–276. https://doi.org/10.1016/j.cirp.2007.05.063. http://www.sciencedirect.com/science/article/pii/S0007850607000686
Duflou J, Lauwers B, Verbert J (2007) Study on the achievable accuracy in single point incremental forming. In: Advanced methods in material forming. Springer, Berlin, pp 251–262. https://doi.org/10.1007/3-540-69845-0_15. http://link.springer.com/10.1007/3-540-69845-0_15
Duflou J, Verbert J, Belkassem B, Gu J, Sol H, Henrard C, Habraken A (2008) Process window enhancement for single point incremental forming through multi-step toolpaths. CIRP Ann Manuf Technol 57(1):253–256. https://doi.org/10.1016/j.cirp.2008.03.030. http://www.sciencedirect.com/science/article/pii/S0007850608000310
Duflou J, Behera AK, Vanhove H, Bertol LS (2013) Manufacture of accurate titanium cranio-facial implants with high forming angle using single point incremental forming. Key Eng Mater 549:223–230. https://doi.org/10.4028/www.scientific.net/KEM.549.223. http://www.scientific.net/KEM.549.223
Duflou J, Lauwers B, Verbert J, Gelaude F, Tunckol Y (2005) Medical application of single point incremental forming: cranial plate manufacturing. In: Bártolo P (ed) Virtual modeling and rapid manufacturing: advanced research in virtual and rapid prototyping, vol 638. Taylor & Francis. https://www.crcpress.com/Virtual-Modelling-and-Rapid-Manufacturing-Advanced-Research-in-Virtual/da-Silva-Bartolo/p/book/9780415390620
Gupta P, Jeswiet J (2017) Effect of temperatures during forming in single point incremental forming. The International Journal of Advanced Manufacturing Technology. https://doi.org/10.1007/s00170-017-1400-0. http://link.springer.com/10.1007/s00170-017-1400-0
Gupta P, Jeswiet J (2017) Observations on heat generated in single point incremental forming. In: Procedia Engineering, vol 183. Elsevier, pp 161–167. https://doi.org/10.1016/j.proeng.2017.04.060. http://www.sciencedirect.com/science/article/pii/S1877705817315655
Hino R, Kawabata K, Yoshida F (2014) Incremental forming with local heating by laser irradiation for magnesium alloy sheet. In: Procedia Engineering, vol 81. Elsevier, pp 2330–2335. https://doi.org/10.1016/j.proeng.2014.10.329. http://www.sciencedirect.com/science/article/pii/S1877705814016087
Hirt G, Ames J, Bambach M (2016) A new forming strategy to realise parts designed for deep-drawing by incremental cnc sheet forming. Steel Res Int 76(2-3):160–166. https://doi.org/10.1002/srin.200505989. https://onlinelibrary.wiley.com/doi/abs/10.1002/srin.200505989
Hussain G, Gao L (2007) A novel method to test the thinning limits of sheet metals in negative incremental forming. Int J Mach Tools Manuf 47(3-4):419–435. https://doi.org/10.1016/j.ijmachtools.2006.06.015. http://www.sciencedirect.com/science/article/pii/S0890695506001611
Jeswiet J, Adams D, Doolan M, McAnulty T, Gupta P (2015) Single point and asymmetric incremental forming. Adv Manuf 3(4):253–262. https://doi.org/10.1007/s40436-015-0126-1. http://link.springer.com/10.1007/s40436-015-0126-1
Jeswiet J, Hagan E (2001) Rapid prototyping of a headlight with sheet metal. In: Canadian institute of mining, metallurgy and petroleum, pp 109–114
Jeswiet J, Micari F, Hirt G, Bramley A, Duflou J, Allwood J (2005) Asymmetric single point incremental forming of sheet metal. CIRP Ann Manuf Technol 54(2):88–114
Jeswiet J, Young D (2005) Forming limit diagrams for single-point incremental forming of aluminium sheet. Proc Inst Mech Eng B J Eng Manuf 219(4):359–364. https://doi.org/10.1243/095440505X32210. http://sdj.sagepub.com/lookup/10.1243/095440505X32210
Kim T, Yang D (2000) Improvement of formability for the incremental sheet metal forming process. Int J Mech Sci 42(7):1271–1286. https://doi.org/10.1016/S0020-7403(99)00047-8. http://www.sciencedirect.com/science/article/pii/S0020740399000478#BIB8
Kitazawa K, Hayashi S, Yamazaki S (1996) Hemispherical stretch-expanding of aluminum sheet by computerized numerically controlled incremental forming process with two path method. Journal of Japan Institute of Light Metals 46(5):219–224. https://doi.org/10.2464/jilm.46.219. http://joi.jlc.jst.go.jp/JST.JSTAGE/jilm/46.219?from=CrossRef
Li J, Hu J, Pan J, Geng P (2012) Thickness distribution and design of a multi-stage process for sheet metal incremental forming. Int J Adv Manuf Technol 62(9-12):981–988. https://doi.org/10.1007/s00170-011-3852-y. http://link.springer.com/10.1007/s00170-011-3852-y
Li Z, Lu S, Chen P (2017) Improvement of dimensional accuracy based on multistage single point incremental forming of a straight wall cylinder part. Int J Precis Eng Manuf 18(9):1281–1286. https://doi.org/10.1007/s12541-017-0151-z. http://link.springer.com/10.1007/s12541-017-0151-z
Liu Z, Li Y, Meehan PA (2013) Vertical wall formation and material flow control for incremental sheet forming by revisiting multistage deformation path strategies. Mater Manuf Process 28(5):562–571. https://doi.org/10.1080/10426914.2013.763964. http://www.tandfonline.com/doi/abs/10.1080/10426914.2013.763964
Malhotra R, Bhattacharya A, Kumar A, Reddy N, Cao J (2011) A new methodology for multi-pass single point incremental forming with mixed toolpaths. CIRP Ann Manuf Technol 60(1):323–326. https://doi.org/10.1016/j.cirp.2011.03.145. http://www.sciencedirect.com/science/article/pii/S0007850611001466
Manco L, Filice L, Ambrogio G (2011) Analysis of the thickness distribution varying tool trajectory in single-point incremental forming. Proc Inst Mech Eng B J Eng Manuf 225(3):348–356. https://doi.org/10.1177/09544054JEM1958. http://journals.sagepub.com/doi/10.1177/09544054JEM1958
Maqbool F, Bambach M (2018) Dominant deformation mechanisms in single point incremental forming (spif) and their effect on geometrical accuracy. Int J Mech Sci 136:279–292. https://doi.org/10.1016/j.ijmecsci.2017.12.053. http://www.sciencedirect.com/science/article/pii/S0020740317323512
Matsubara S (2001) A computer numerically controlled dieless incremental forming of a sheet metal. In: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol 215. Professional Engineering Publishing, pp 959–966. https://doi.org/10.1243/0954405011518863
Micari F, Ambrogio G, Filice L (2007) Shape and dimensional accuracy in single point incremental forming: state of the art and future trends. J Mater Process Technol 191(1-3):390–395. https://doi.org/10.1016/j.jmatprotec.2007.03.066. http://www.sciencedirect.com/science/article/pii/S0924013607002919
Mirnia MJ, Mollaei Dariani B, Vanhove H, Duflou J (2014) Thickness improvement in single point incremental forming deduced by sequential limit analysis. Int J Adv Manuf Technol 70(9-12):2029–2041. https://doi.org/10.1007/s00170-013-5447-2. http://link.springer.com/10.1007/s00170-013-5447-2
Otsu M, Yasunaga M, Matsuda M, Takashima K (2014) Friction stir incremental forming of A2017 aluminum sheets. Protein Eng 81:2318–2323. https://doi.org/10.1016/j.proeng.2014.10.327. http://www.sciencedirect.com/science/article/pii/S1877705814016063
Palumbo G, Brandizzi M (2012) Experimental investigations on the single point incremental forming of a titanium alloy component combining static heating with high tool rotation speed. Mater Des 40:43–51. https://doi.org/10.1016/J.MATDES.2012.03.031. http://www.sciencedirect.com/science/article/pii/S0261306912002038
Skjoedt M, Bay N, Endelt B, Ingarao G (2008) Multi stage strategies for single point incremental forming of a cup. Int J Mater Form 1(S1):1199–1202. https://doi.org/10.1007/s12289-008-0156-3. http://link.springer.com/10.1007/s12289-008-0156-3
Skjoedt M, Silva MB, Martins PAF, Bay N (2010) Strategies and limits in multi-stage single-point incremental forming. J Strain Anal Eng Des 45(1):33–44. https://doi.org/10.1243/03093247JSA574. http://sdj.sagepub.com/lookup/doi/10.1243/03093247JSA574
Vanhove H, Carette Y, Vancleef S, Duflou J (2017) Production of thin shell clavicle implants through single point incremental forming. In: Procedia Engineering, vol 183. Elsevier, pp 174–179. https://doi.org/10.1016/j.proeng.2017.04.058. http://www.sciencedirect.com/science/article/pii/S1877705817315631
Verbert J, Belkassem B, Henrard C, Habraken AM, Gu J, Sol H, Lauwers B, Duflou J (2008) Multi-Step toolpath approach to overcome forming limitations in single point incremental forming. Int J Mater Form 1(S1):1203–1206. https://doi.org/10.1007/s12289-008-0157-2. http://link.springer.com/10.1007/s12289-008-0157-2
Wernicke S, Dang T, Gies S, Tekkaya A (2018) Effect of multiple forming tools on geometrical and mechanical properties in incremental sheet forming. AIP Conf Proc 1960(1):160031
Xu D, Malhotra R, Reddy NV, Chen J, Cao J (2012) Analytical prediction of stepped feature generation in multi-pass single point incremental forming. In: Journal of manufacturing processes, vol 14, pp 487–494. https://doi.org/10.1016/j.jmapro.2012.08.003
Young D, Jeswiet J (2004) Wall thickness variations in single-point incremental forming. Proc Inst Mech Eng B J Eng Manuf 218(11):1453–1459. https://doi.org/10.1243/0954405042418400. http://journals.sagepub.com/doi/10.1243/0954405042418400
Ziran X, Gao L, Hussain G, Cui Z (2009) The performance of flat end and hemispherical end tools in single-point incremental forming. Int J Adv Manuf Technol 46(9-12):1113–1118. https://doi.org/10.1007/s00170-009-2179-4. http://link.springer.com/10.1007/s00170-009-2179-4
Acknowledgements
The authors would like to thank technical staff members of Machine Shop, Department of Mechanical and Materials Engineering, Queen’s University. The authors would also like to thank Prof. Chris K. Mechefske, Prof. Bradley J. Diak, Department of Mechanical and Materials Engineering, Queen’s University, Dr. Jessica Hiscocks, and Diego Chamberlain for their continuous support during the project.
Funding
The authors would like to thank the Natural Sciences and Engineering Research Council of Canada (NSERC) for financial support.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Gupta, P., Szekeres, A. & Jeswiet, J. Design and development of an aerospace component with single-point incremental forming. Int J Adv Manuf Technol 103, 3683–3702 (2019). https://doi.org/10.1007/s00170-019-03622-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00170-019-03622-4