Design and development of an aerospace component with single-point incremental forming | The International Journal of Advanced Manufacturing Technology
Skip to main content

Design and development of an aerospace component with single-point incremental forming

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Single-point incremental forming has potential applications in prototyping and custom part manufacture for a range of industries including automotive and aerospace. For components with vertical walls, multiple passes are required to achieve a reasonable residual strain distribution and to accommodate large material strains without failure. In this paper, various multistage strategies were evaluated experimentally, and a complex C-channel fixture designed for aircraft vibration testing was successfully manufactured. Design guidelines for flat-base geometries are provided along with the rules for high-quality toolpath generation. A separate set of experiments was conducted comparing hemispherical and flat tools, and a flat tool was selected as being the most suitable for flat-base parts. The typical thickness variation developed in components and a geometrical error analysis are also presented. The response of the developed component to annealing and effect of this process on final geometrical errors are also reported. Cost analyses from design to development stage of the component are also presented. This work will be of practical interest to anyone seeking to bridge the gap between prototyping and large-scale production for complex flat-bottomed part geometries with single-point incremental forming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams D (2013) Improvements on single point incremental forming through electrically assisted forming, contact area prediction and tool development. Ph.D. thesis, Queen’s University

  2. Adams D, Jeswiet J (2014) Design rules and applications of single-point incremental forming. Proc Inst Mech Eng B J Eng Manuf 229(5):754–760. https://doi.org/10.1177/0954405414531426 . http://pib.sagepub.com/content/229/5/754.abstract

    Article  Google Scholar 

  3. Afonso D, de Sousa RA, Torcato R (2017) Incremental forming of tunnel type parts. In: Procedia Engineering, vol 183. Elsevier, pp 137–142. https://doi.org/10.1016/j.proeng.2017.04.036. http://www.sciencedirect.com/science/article/pii/S1877705817315412

  4. Ambrogio G, Cozza V, Filice L, Micari F (2007) An analytical model for improving precision in single point incremental forming. J Mater Process Technol 191(1-3):92–95. https://doi.org/10.1016/J.JMATPROTEC.2007.03.079. https://www.sciencedirect.com/science/article/pii/S0924013607002853

    Article  Google Scholar 

  5. Ambrogio G, Filice L, Gagliardi F, Micari F (2005) Three-dimensional FE simulation of single point incremental forming: experimental evidences and process design improving. In: Proceedings of the eighth. http://congress.cimne.upc.es/complas05/admin/Files/FilePaper/p69.pdf

  6. Ambrogio G, Filice L, Manco GL (2008) Warm incremental forming of magnesium alloy AZ31. CIRP Ann Manuf Technol 57(1):257–260. https://doi.org/10.1016/j.cirp.2008.03.066. http://www.sciencedirect.com/science/article/pii/S0007850608001054

    Article  Google Scholar 

  7. Ambrogio G, Sgambitterra E, De Napoli L, Gagliardi F, Fragomeni G, Piccininni A, Gugleilmi P, Palumbo G, Sorgente D, La Barbera L, Villa TM (2017) Performances analysis of titanium prostheses manufactured by superplastic forming and incremental forming. In: Procedia Engineering, vol 183. Elsevier, pp 168–173. https://doi.org/10.1016/j.proeng.2017.04.057. http://www.sciencedirect.com/science/article/pii/S187770581731562X

  8. Bambach M, Taleb Araghi B, Hirt G (2009) Strategies to improve the geometric accuracy in asymmetric single point incremental forming. Production Engineering. https://doi.org/10.1007/s11740-009-0150-8

  9. Behera AK, de Sousa RA, Ingarao G, Oleksik V (2017) Single point incremental forming: an assessment of the progress and technology trends from 2005 to 2015. https://doi.org/10.1016/j.jmapro.2017.03.014. http://www.sciencedirect.com/science/article/pii/S1526612517300713.

  10. Cawley B, Adams D, Jeswiet J (2013) Examining tool shapes in single point incremental forming. Proc NAMRI/SME 41. https://www.researchgate.net/publication/283014953_Examining_tool_shapes_in_single_point_incremental_forming

  11. Cerro I, Maidagan E, Arana J, Rivero A, Rodríguez P (2006) Theoretical and experimental analysis of the dieless incremental sheet forming process. J Mater Process Technol 177(1-3):404–408. https://doi.org/10.1016/j.jmatprotec.2006.04.078. http://www.sciencedirect.com/science/article/pii/S0924013606004511

    Article  Google Scholar 

  12. Chamberlain DA, Mechefske CK (2017) Experimental modal analysis of a half-scale model twin-engine aircraft rear fuselage engine mount support frame. In: 29th conference on mechanical vibration and noise, vol 8. ASME, p V008T12A008. https://doi.org/10.1115/DETC2017-67389. http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?

  13. Duflou J, Callebaut B, Verbert J, De Baerdemaeker H (2007) Laser assisted incremental forming: formability and accuracy improvement. CIRP Ann Manuf Technol 56(1):273–276. https://doi.org/10.1016/j.cirp.2007.05.063. http://www.sciencedirect.com/science/article/pii/S0007850607000686

    Article  Google Scholar 

  14. Duflou J, Lauwers B, Verbert J (2007) Study on the achievable accuracy in single point incremental forming. In: Advanced methods in material forming. Springer, Berlin, pp 251–262. https://doi.org/10.1007/3-540-69845-0_15. http://link.springer.com/10.1007/3-540-69845-0_15

  15. Duflou J, Verbert J, Belkassem B, Gu J, Sol H, Henrard C, Habraken A (2008) Process window enhancement for single point incremental forming through multi-step toolpaths. CIRP Ann Manuf Technol 57(1):253–256. https://doi.org/10.1016/j.cirp.2008.03.030. http://www.sciencedirect.com/science/article/pii/S0007850608000310

    Article  Google Scholar 

  16. Duflou J, Behera AK, Vanhove H, Bertol LS (2013) Manufacture of accurate titanium cranio-facial implants with high forming angle using single point incremental forming. Key Eng Mater 549:223–230. https://doi.org/10.4028/www.scientific.net/KEM.549.223. http://www.scientific.net/KEM.549.223

    Article  Google Scholar 

  17. Duflou J, Lauwers B, Verbert J, Gelaude F, Tunckol Y (2005) Medical application of single point incremental forming: cranial plate manufacturing. In: Bártolo P (ed) Virtual modeling and rapid manufacturing: advanced research in virtual and rapid prototyping, vol 638. Taylor & Francis. https://www.crcpress.com/Virtual-Modelling-and-Rapid-Manufacturing-Advanced-Research-in-Virtual/da-Silva-Bartolo/p/book/9780415390620

  18. Gupta P, Jeswiet J (2017) Effect of temperatures during forming in single point incremental forming. The International Journal of Advanced Manufacturing Technology. https://doi.org/10.1007/s00170-017-1400-0. http://link.springer.com/10.1007/s00170-017-1400-0

  19. Gupta P, Jeswiet J (2017) Observations on heat generated in single point incremental forming. In: Procedia Engineering, vol 183. Elsevier, pp 161–167. https://doi.org/10.1016/j.proeng.2017.04.060. http://www.sciencedirect.com/science/article/pii/S1877705817315655

  20. Hino R, Kawabata K, Yoshida F (2014) Incremental forming with local heating by laser irradiation for magnesium alloy sheet. In: Procedia Engineering, vol 81. Elsevier, pp 2330–2335. https://doi.org/10.1016/j.proeng.2014.10.329. http://www.sciencedirect.com/science/article/pii/S1877705814016087

  21. Hirt G, Ames J, Bambach M (2016) A new forming strategy to realise parts designed for deep-drawing by incremental cnc sheet forming. Steel Res Int 76(2-3):160–166. https://doi.org/10.1002/srin.200505989. https://onlinelibrary.wiley.com/doi/abs/10.1002/srin.200505989

    Article  Google Scholar 

  22. Hussain G, Gao L (2007) A novel method to test the thinning limits of sheet metals in negative incremental forming. Int J Mach Tools Manuf 47(3-4):419–435. https://doi.org/10.1016/j.ijmachtools.2006.06.015. http://www.sciencedirect.com/science/article/pii/S0890695506001611

    Article  Google Scholar 

  23. Jeswiet J, Adams D, Doolan M, McAnulty T, Gupta P (2015) Single point and asymmetric incremental forming. Adv Manuf 3(4):253–262. https://doi.org/10.1007/s40436-015-0126-1. http://link.springer.com/10.1007/s40436-015-0126-1

    Article  Google Scholar 

  24. Jeswiet J, Hagan E (2001) Rapid prototyping of a headlight with sheet metal. In: Canadian institute of mining, metallurgy and petroleum, pp 109–114

  25. Jeswiet J, Micari F, Hirt G, Bramley A, Duflou J, Allwood J (2005) Asymmetric single point incremental forming of sheet metal. CIRP Ann Manuf Technol 54(2):88–114

    Article  Google Scholar 

  26. Jeswiet J, Young D (2005) Forming limit diagrams for single-point incremental forming of aluminium sheet. Proc Inst Mech Eng B J Eng Manuf 219(4):359–364. https://doi.org/10.1243/095440505X32210. http://sdj.sagepub.com/lookup/10.1243/095440505X32210

    Article  Google Scholar 

  27. Kim T, Yang D (2000) Improvement of formability for the incremental sheet metal forming process. Int J Mech Sci 42(7):1271–1286. https://doi.org/10.1016/S0020-7403(99)00047-8. http://www.sciencedirect.com/science/article/pii/S0020740399000478#BIB8

    Article  MATH  Google Scholar 

  28. Kitazawa K, Hayashi S, Yamazaki S (1996) Hemispherical stretch-expanding of aluminum sheet by computerized numerically controlled incremental forming process with two path method. Journal of Japan Institute of Light Metals 46(5):219–224. https://doi.org/10.2464/jilm.46.219. http://joi.jlc.jst.go.jp/JST.JSTAGE/jilm/46.219?from=CrossRef

    Article  Google Scholar 

  29. Li J, Hu J, Pan J, Geng P (2012) Thickness distribution and design of a multi-stage process for sheet metal incremental forming. Int J Adv Manuf Technol 62(9-12):981–988. https://doi.org/10.1007/s00170-011-3852-y. http://link.springer.com/10.1007/s00170-011-3852-y

    Article  Google Scholar 

  30. Li Z, Lu S, Chen P (2017) Improvement of dimensional accuracy based on multistage single point incremental forming of a straight wall cylinder part. Int J Precis Eng Manuf 18(9):1281–1286. https://doi.org/10.1007/s12541-017-0151-z. http://link.springer.com/10.1007/s12541-017-0151-z

    Article  Google Scholar 

  31. Liu Z, Li Y, Meehan PA (2013) Vertical wall formation and material flow control for incremental sheet forming by revisiting multistage deformation path strategies. Mater Manuf Process 28(5):562–571. https://doi.org/10.1080/10426914.2013.763964. http://www.tandfonline.com/doi/abs/10.1080/10426914.2013.763964

    Article  Google Scholar 

  32. Malhotra R, Bhattacharya A, Kumar A, Reddy N, Cao J (2011) A new methodology for multi-pass single point incremental forming with mixed toolpaths. CIRP Ann Manuf Technol 60(1):323–326. https://doi.org/10.1016/j.cirp.2011.03.145. http://www.sciencedirect.com/science/article/pii/S0007850611001466

    Article  Google Scholar 

  33. Manco L, Filice L, Ambrogio G (2011) Analysis of the thickness distribution varying tool trajectory in single-point incremental forming. Proc Inst Mech Eng B J Eng Manuf 225(3):348–356. https://doi.org/10.1177/09544054JEM1958. http://journals.sagepub.com/doi/10.1177/09544054JEM1958

    Article  Google Scholar 

  34. Maqbool F, Bambach M (2018) Dominant deformation mechanisms in single point incremental forming (spif) and their effect on geometrical accuracy. Int J Mech Sci 136:279–292. https://doi.org/10.1016/j.ijmecsci.2017.12.053. http://www.sciencedirect.com/science/article/pii/S0020740317323512

    Article  Google Scholar 

  35. Matsubara S (2001) A computer numerically controlled dieless incremental forming of a sheet metal. In: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol 215. Professional Engineering Publishing, pp 959–966. https://doi.org/10.1243/0954405011518863

  36. Micari F, Ambrogio G, Filice L (2007) Shape and dimensional accuracy in single point incremental forming: state of the art and future trends. J Mater Process Technol 191(1-3):390–395. https://doi.org/10.1016/j.jmatprotec.2007.03.066. http://www.sciencedirect.com/science/article/pii/S0924013607002919

    Article  Google Scholar 

  37. Mirnia MJ, Mollaei Dariani B, Vanhove H, Duflou J (2014) Thickness improvement in single point incremental forming deduced by sequential limit analysis. Int J Adv Manuf Technol 70(9-12):2029–2041. https://doi.org/10.1007/s00170-013-5447-2. http://link.springer.com/10.1007/s00170-013-5447-2

    Article  Google Scholar 

  38. Otsu M, Yasunaga M, Matsuda M, Takashima K (2014) Friction stir incremental forming of A2017 aluminum sheets. Protein Eng 81:2318–2323. https://doi.org/10.1016/j.proeng.2014.10.327. http://www.sciencedirect.com/science/article/pii/S1877705814016063

    Google Scholar 

  39. Palumbo G, Brandizzi M (2012) Experimental investigations on the single point incremental forming of a titanium alloy component combining static heating with high tool rotation speed. Mater Des 40:43–51. https://doi.org/10.1016/J.MATDES.2012.03.031. http://www.sciencedirect.com/science/article/pii/S0261306912002038

    Article  Google Scholar 

  40. Skjoedt M, Bay N, Endelt B, Ingarao G (2008) Multi stage strategies for single point incremental forming of a cup. Int J Mater Form 1(S1):1199–1202. https://doi.org/10.1007/s12289-008-0156-3. http://link.springer.com/10.1007/s12289-008-0156-3

    Article  Google Scholar 

  41. Skjoedt M, Silva MB, Martins PAF, Bay N (2010) Strategies and limits in multi-stage single-point incremental forming. J Strain Anal Eng Des 45(1):33–44. https://doi.org/10.1243/03093247JSA574. http://sdj.sagepub.com/lookup/doi/10.1243/03093247JSA574

    Article  Google Scholar 

  42. Vanhove H, Carette Y, Vancleef S, Duflou J (2017) Production of thin shell clavicle implants through single point incremental forming. In: Procedia Engineering, vol 183. Elsevier, pp 174–179. https://doi.org/10.1016/j.proeng.2017.04.058. http://www.sciencedirect.com/science/article/pii/S1877705817315631

  43. Verbert J, Belkassem B, Henrard C, Habraken AM, Gu J, Sol H, Lauwers B, Duflou J (2008) Multi-Step toolpath approach to overcome forming limitations in single point incremental forming. Int J Mater Form 1(S1):1203–1206. https://doi.org/10.1007/s12289-008-0157-2. http://link.springer.com/10.1007/s12289-008-0157-2

    Article  Google Scholar 

  44. Wernicke S, Dang T, Gies S, Tekkaya A (2018) Effect of multiple forming tools on geometrical and mechanical properties in incremental sheet forming. AIP Conf Proc 1960(1):160031

    Article  Google Scholar 

  45. Xu D, Malhotra R, Reddy NV, Chen J, Cao J (2012) Analytical prediction of stepped feature generation in multi-pass single point incremental forming. In: Journal of manufacturing processes, vol 14, pp 487–494. https://doi.org/10.1016/j.jmapro.2012.08.003

  46. Young D, Jeswiet J (2004) Wall thickness variations in single-point incremental forming. Proc Inst Mech Eng B J Eng Manuf 218(11):1453–1459. https://doi.org/10.1243/0954405042418400. http://journals.sagepub.com/doi/10.1243/0954405042418400

    Article  Google Scholar 

  47. Ziran X, Gao L, Hussain G, Cui Z (2009) The performance of flat end and hemispherical end tools in single-point incremental forming. Int J Adv Manuf Technol 46(9-12):1113–1118. https://doi.org/10.1007/s00170-009-2179-4. http://link.springer.com/10.1007/s00170-009-2179-4

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank technical staff members of Machine Shop, Department of Mechanical and Materials Engineering, Queen’s University. The authors would also like to thank Prof. Chris K. Mechefske, Prof. Bradley J. Diak, Department of Mechanical and Materials Engineering, Queen’s University, Dr. Jessica Hiscocks, and Diego Chamberlain for their continuous support during the project.

Funding

The authors would like to thank the Natural Sciences and Engineering Research Council of Canada (NSERC) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranav Gupta.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, P., Szekeres, A. & Jeswiet, J. Design and development of an aerospace component with single-point incremental forming. Int J Adv Manuf Technol 103, 3683–3702 (2019). https://doi.org/10.1007/s00170-019-03622-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-03622-4

Keywords