Multiple criteria group decision-making for supplier selection based on COPRAS method with interval type-2 fuzzy sets | The International Journal of Advanced Manufacturing Technology Skip to main content
Log in

Multiple criteria group decision-making for supplier selection based on COPRAS method with interval type-2 fuzzy sets

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Supplier selection is one of the most critical activities of purchasing management in a supply chain because of the key role of supplier’s performance in achieving the objectives of a supply chain. Supplier selection problem requires a trade-off between multiple criteria exhibiting vagueness and imprecision with the involvement of a group of experts. This paper presents a multiple criteria group decision-making approach for supplier selection problem in the context of interval type-2 fuzzy sets. A new method for ranking interval type-2 fuzzy numbers, based on the centroid of fuzzy sets, is proposed and compared with some methods. The proposed ranking method is used for extending complex proportional assessment (COPRAS) method for group decision-making with interval type-2 fuzzy numbers. The developed method uses a stepwise procedure for ranking and evaluating the alternatives, in terms of significance and utility degree, and selects the best solution considering both the positive-ideal and the negative-ideal solutions. To demonstrate the applicability of the proposed approach in supplier selection problems, an illustrative example is presented and the results are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hicks C, McGovern T, Earl CF (2000) Supply chain management: a strategic issue in engineer to order manufacturing. Int J Prod Econ 65(2):179–190

    Article  Google Scholar 

  2. Degraeve Z, Roodhooft F (1999) Improving the efficiency of the purchasing process using total cost of ownership information: The case of heating electrodes at Cockerill Sambre S.A. Eur J Oper Res 112(1):42–53

    Article  MathSciNet  MATH  Google Scholar 

  3. Degraeve Z, Labro E, Roodhooft F (2000) An evaluation of vendor selection models from a total cost of ownership perspective. Eur J Oper Res 125(1):34–58

    Article  MathSciNet  MATH  Google Scholar 

  4. Patton Iii WE (1996) Use of human judgment models in industrial buyers' vendor selection decisions. Ind Mark Manag 25(2):135–149

    Article  Google Scholar 

  5. Jayaraman V, Srivastava R, Benton WC (1999) Supplier selection and order quantity allocation: a comprehensive model. J Supply Chain Manag 35(1):50–58

    Article  Google Scholar 

  6. Weber CA, Current JR (1993) A multiobjective approach to vendor selection. Eur J Oper Res 68(2):173–184

    Article  MATH  Google Scholar 

  7. Weber CA, Current JR, Benton WC (1991) Vendor selection criteria and methods. Eur J Oper Res 50(1):2–18

    Article  Google Scholar 

  8. Weber CA, Current JR, Desai A (1998) Non-cooperative negotiation strategies for vendor selection. Eur J Oper Res 108(1):208–223

    Article  MATH  Google Scholar 

  9. Kumar M, Vrat P, Shankar R (2004) A fuzzy goal programming approach for vendor selection problem in a supply chain. Comput Ind Eng 46(1):69–85

    Article  Google Scholar 

  10. Wise R, Morrison D (2000) Beyond the exchange: the future of B2B (cover story). Harv Bus Rev 78(6):86–96

    Google Scholar 

  11. Roshandel J, Miri-Nargesi SS, Hatami-Shirkouhi L (2013) Evaluating and selecting the supplier in detergent production industry using hierarchical fuzzy TOPSIS. Appl Math Model 37(24):10170–10181

    Article  Google Scholar 

  12. Ghodsypour SH, O'Brien C (1998) A decision support system for supplier selection using an integrated analytic hierarchy process and linear programming. Int J Prod Econ 56–57:199–212

    Article  Google Scholar 

  13. Dulmin R, Mininno V (2003) Supplier selection using a multi-criteria decision aid method. J Purch Supply Manag 9(4):177–187

    Article  Google Scholar 

  14. Amid A, Ghodsypour SH, O’Brien C (2009) A weighted additive fuzzy multiobjective model for the supplier selection problem under price breaks in a supply chain. Int J Prod Econ 121(2):323–332

    Article  Google Scholar 

  15. Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen C-T (2000) Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets Syst 114(1):1–9

    Article  MATH  Google Scholar 

  17. Yager RR, Xu Z (2006) The continuous ordered weighted geometric operator and its application to decision making. Fuzzy Sets Syst 157(10):1393–1402

    Article  MathSciNet  MATH  Google Scholar 

  18. Hwang CL, Yoon KP (1981) Multiple attribute decision making methods and applications: a state-of-the art survey. Springer, London

    Book  MATH  Google Scholar 

  19. Kaya T, Kahraman C (2011) Multicriteria decision making in energy planning using a modified fuzzy TOPSIS methodology. Expert Syst Appl 38(6):6577–6585

    Article  Google Scholar 

  20. Li D-F, Yang J-B (2004) Fuzzy linear programming technique for multiattribute group decision making in fuzzy environments. Inf Sci 158:263–275

    Article  MATH  Google Scholar 

  21. Ma J, Lu J, Zhang G (2010) Decider: a fuzzy multi-criteria group decision support system. Knowl-Based Syst 23(1):23–31

    Article  Google Scholar 

  22. Alipour MH, Shamsai A, Ahmady N (2010) A new fuzzy multicriteria decision making method and its application in diversion of water. Expert Syst Appl 37(12):8809–8813

    Article  Google Scholar 

  23. Yeh C-H, Chang Y-H (2009) Modeling subjective evaluation for fuzzy group multicriteria decision making. Eur J Oper Res 194(2):464–473

    Article  MATH  Google Scholar 

  24. Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning—I. Inf Sci 8(3):199–249

    Article  MathSciNet  MATH  Google Scholar 

  25. Mendel JM, John RI, Feilong L (2006) Interval type-2 fuzzy logic systems made simple. IEEE Trans Fuzzy Syst 14(6):808–821

    Article  Google Scholar 

  26. Mendel JM (2009) On answering the question “Where do I start in order to solve a new problem involving interval type-2 fuzzy sets?”. Inf Sci 179(19):3418–3431

    Article  MathSciNet  MATH  Google Scholar 

  27. Mendel JM (2007) Type-2 fuzzy sets and systems: an overview [corrected reprint]. IEEE Comput Intell Mag 2(2):20–29

    Article  Google Scholar 

  28. Mitchell HB (2005) Pattern recognition using type-II fuzzy sets. Inf Sci 170(2–4):409–418

    Article  Google Scholar 

  29. Zeng W, Li H (2006) Relationship between similarity measure and entropy of interval valued fuzzy sets. Fuzzy Sets Syst 157(11):1477–1484

    Article  MathSciNet  MATH  Google Scholar 

  30. Wu D, Mendel JM (2008) A vector similarity measure for linguistic approximation: Interval type-2 and type-1 fuzzy sets. Inf Sci 178(2):381–402

    Article  MathSciNet  MATH  Google Scholar 

  31. Chen S-M, Lee L-W (2010) Fuzzy multiple attributes group decision-making based on the interval type-2 TOPSIS method. Expert Syst Appl 37(4):2790–2798

    Article  Google Scholar 

  32. Lu HW, Huang GH, He L (2010) Development of an interval-valued fuzzy linear-programming method based on infinite α-cuts for water resources management. Environ Model Softw 25(3):354–361

    Article  Google Scholar 

  33. Vahdani B, Jabbari A, Roshanaei V, Zandieh M (2010) Extension of the ELECTRE method for decision-making problems with interval weights and data. Int J Adv Manuf Technol 50(5–8):793–800

    Article  Google Scholar 

  34. Vahdani B, Hadipour H (2011) Extension of the ELECTRE method based on interval-valued fuzzy sets. Soft Comput 15(3):569–579

    Article  Google Scholar 

  35. Vahdani B, Hadipour H, Sadaghiani J, Amiri M (2010) Extension of VIKOR method based on interval-valued fuzzy sets. Int J Adv Manuf Technol 47(9–12):1231–1239

    Article  Google Scholar 

  36. Chen T-Y (2012) Multiple criteria group decision-making with generalized interval-valued fuzzy numbers based on signed distances and incomplete weights. Appl Math Model 36(7):3029–3052

    Article  MathSciNet  MATH  Google Scholar 

  37. Chen T-Y (2013) A linear assignment method for multiple-criteria decision analysis with interval type-2 fuzzy sets. Appl Soft Comput 13(5):2735–2748

    Article  Google Scholar 

  38. Wang W, Liu X, Qin Y (2012) Multi-attribute group decision making models under interval type-2 fuzzy environment. Knowl-Based Syst 30:121–128

    Article  Google Scholar 

  39. Chen S-M, Yang M-W, Lee L-W, Yang S-W (2012) Fuzzy multiple attributes group decision-making based on ranking interval type-2 fuzzy sets. Expert Syst Appl 39(5):5295–5308

    Article  Google Scholar 

  40. Chen T-Y (2013) A signed-distance-based approach to importance assessment and multi-criteria group decision analysis based on interval type-2 fuzzy set. Knowl Inf Syst 35(1):193–231

    Article  Google Scholar 

  41. Hu J, Zhang Y, Chen X, Liu Y (2013) Multi-criteria decision making method based on possibility degree of interval type-2 fuzzy number. Knowl-Based Syst 43:21–29

    Article  Google Scholar 

  42. Chen S-M, Lee L-W (2010) Fuzzy multiple attributes group decision-making based on the ranking values and the arithmetic operations of interval type-2 fuzzy sets. Expert Syst Appl 37(1):824–833

    Article  Google Scholar 

  43. Zhang Z, Zhang S (2013) A novel approach to multi attribute group decision making based on trapezoidal interval type-2 fuzzy soft sets. Appl Math Model 37(7):4948–4971

    Article  MathSciNet  Google Scholar 

  44. Celik E, Bilisik ON, Erdogan M, Gumus AT, Baracli H (2013) An integrated novel interval type-2 fuzzy MCDM method to improve customer satisfaction in public transportation for Istanbul. Transp Res E: Logist Transp Rev 58:28–51

    Article  Google Scholar 

  45. Chen S-M, Wang C-Y (2013) Fuzzy decision making systems based on interval type-2 fuzzy sets. Inf Sci 242:1–21

    Article  Google Scholar 

  46. Razavi Hajiagha SH, Hashemi SS, Zavadskas EK (2013) A complex proportional assessment method for group decision making in an interval-valued intuitionistic fuzzy environment. Technol Econ Dev Econ 19(1):22–37

    Article  Google Scholar 

  47. Zavadskas EK, Kaklauskas A, Turskis Z, Tamošaitiene J (2008) Selection of the effective dwelling house walls by applying attributes values determined at intervals. J Civ Eng Manag 14(2):85–93

    Article  Google Scholar 

  48. Wang Y-M, Yang J-B, Xu D-L, Chin K-S (2006) On the centroids of fuzzy numbers. Fuzzy Sets Syst 157(7):919–926

    Article  MathSciNet  MATH  Google Scholar 

  49. Bortolan G, Degani R (1985) A review of some methods for ranking fuzzy subsets. Fuzzy Sets Syst 15(1):1–19

    Article  MathSciNet  MATH  Google Scholar 

  50. Lee ES, Li RJ (1988) Comparison of fuzzy numbers based on the probability measure of fuzzy events. Comput Math Appl 15(10):887–896

    Article  MathSciNet  MATH  Google Scholar 

  51. Baas SM, Kwakernaak H (1977) Rating and ranking of multiple-aspect alternatives using fuzzy sets. Automatica 13(1):47–58

    Article  MathSciNet  MATH  Google Scholar 

  52. Chang J-R, Cheng C-H, Kuo C-Y (2006) Conceptual procedure for ranking fuzzy numbers based on adaptive two-dimensions dominance. Soft Comput 10(2):94–103

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Keshavarz Ghorabaee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keshavarz Ghorabaee, M., Amiri, M., Salehi Sadaghiani, J. et al. Multiple criteria group decision-making for supplier selection based on COPRAS method with interval type-2 fuzzy sets. Int J Adv Manuf Technol 75, 1115–1130 (2014). https://doi.org/10.1007/s00170-014-6142-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-014-6142-7

Keywords

Navigation