Residential equilibrium in a multifractal metropolitan area | The Annals of Regional Science Skip to main content
Log in

Residential equilibrium in a multifractal metropolitan area

  • Original Paper
  • Published:
The Annals of Regional Science Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A residential location model derived from urban economics is combined with the geometry of a multifractal Sierpinski carpet to represent and model a metropolitan area. This area is made up of a system of built-up patches hierarchically organised around a city centre, and green areas arranged in an inverse hierarchical order (large open-spaces in the periphery). An analytical solution is obtained using a specific geographic coding system for computing distances. The values of the parameters used in the model are based on the French medium sized metropolitan areas; a realistic benchmark is proposed and comparative-statics simulations are performed. The results show that the French peri-urbanisation process (which took place from 1970 onward) can be explained by an increase in income and a reduction in transport costs. Nevertheless, changes in household preferences, in particular an increased taste for open spaces, can also contribute to urban sprawl by making the gradient of land rents less steep and by making peripheral household locations more desirable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anas A, Arnott R, Small K (1998) Urban spatial structure. J Econ Lit 36: 1426–1464

    Google Scholar 

  • Arlinghaus S, Arlinghaus W (1989) The fractal theory of central place geometry: a Diophantine analysis of fractal generators for arbitrary Löschian numbers. Geogr Anal 21: 103–121

    Article  Google Scholar 

  • Bates LJ, Santerre RE (2001) The public demand of open space: the case of Connecticut communities. J Urban Econ 50: 97–111

    Article  Google Scholar 

  • Bailly E (1999) Modèle de simulation fractale et croissance urbaine; étude de cas: Nice, Marseille, Gènes (Fractal simulation models and urban growth: case studies: Nice, Marseille, Genoa). PhD thesis, University of Nice Sophia-Antipolis.

  • Batty M (1991) Generating urban forms from diffusive growth. Environ Plan A 23: 511–544

    Article  Google Scholar 

  • Batty M (2005) Understanding cities with cellular automata, agent-based models and fractals. MIT Press, Cambridge

    Google Scholar 

  • Batty M, Longley P (1994) Fractal cities: a geometry of form and function. Academic, London

    Google Scholar 

  • Batty M, Xie Y (1996) Preliminary evidence for a theory of fractal cities. Environ Plan A 28: 1745–1762

    Article  Google Scholar 

  • Bender A, Din A, Favarger P, Hoesli M, Laakso J (1997) An analysis of perceptions concerning the environmental quality of housing in Geneva. Urban Stud 34: 503–513

    Article  Google Scholar 

  • Bolitzer B, Netusil NR (2000) The impact of open spaces on property values in Portland, Oregon. J Environ Manag 59: 185–193

    Article  Google Scholar 

  • Brueckner JK, Thisse JF, Zenou Y (1999) Why is central Paris rich and downtown Detroit poor? An amenity-based theory. Eur Econ Rev 43: 91–107

    Article  Google Scholar 

  • Burchfield M, Overman HG, Puga D, Turner MA (2006) The determinants of urban sprawl: a portrait from space. Q J Econ 121: 587–633

    Article  Google Scholar 

  • Cavailhès J (2005) Le prix des attributs du logement. Economie et Statistique 381(382): 91–123

    Article  Google Scholar 

  • Cavailhès J, Frankhauser P, Peeters D, Thomas I (2004a) Where Alonso meets Sierpinski: an urban economic model of a fractal metropolitan area. Environ Plan A 36((8): 1471–1498

    Article  Google Scholar 

  • Cavailhès J, Peeters D, Sekeris E, Thisse JF (2004) The peri-urban city: why to live between the suburbs and the countryside?. Reg Sci Urban Econ 34: 681–703

    Article  Google Scholar 

  • Chamberlin E (1933) The theory of monopolistic competition. Harvard University Press, Cambridge

    Google Scholar 

  • Cheshire P, Sheppard S (1995) On the price of land and the value of amenities. Economica 62: 247–267

    Article  Google Scholar 

  • Cheshire P, Sheppard S (2002) The welfare economics of land use planning. J Urban Econ 52: 242–269

    Article  Google Scholar 

  • Christaller W (1933) Die Zentralen Orte in Süddeutschland. Gustav Fischer Verlag, Jena

    Google Scholar 

  • D’Aspremont C, Gabszewicz JJ, Thisse JF (1979) On Hotteling’s “stability in competition”. Econometrica 47: 1045–1050

    Google Scholar 

  • D’Aspremont C, DosSantos Ferreira R, Gérard-Varet LA (1996) On the Dixit-Stiglitz model of monopolistic competition. Am Econ Rev 86: 623–629

    Google Scholar 

  • De Keersmaecker ML, Frankhauser P, Thomas I (2003) Using fractal dimensions to characterise intra-urban diversity: the example of Brussels. Geogr Anal 35: 310–328

    Article  Google Scholar 

  • Dixit AK, Stiglitz JE (1977) Monopolistic competition and optimum product diversity. Am Econ Rev 67: 297–308

    Google Scholar 

  • Frankhauser P (1994) La fractalité des structures urbaines. Anthropos, Paris

    Google Scholar 

  • Frankhauser P (1998) The fractal approach: a new tool for the spatial analysis of urban agglomerations. Population: an english selection, pp 205–240

  • Frankhauser P (2008) Fractal geometry for measuring and modelling urban patterns. In: International workshop : the dynamics of complex urban systems, an interdisciplinary approach, Monte Verità (Ascona/Switzerland, November 2004). Springer, Heidelberg, pp 241–243

  • Fujita M, Krugman P, Venables A (1999) The spatial economy: cities, regions and international trade. MIT Press, Cambridge

    Google Scholar 

  • Fujita M, Thisse JF (2002) Economy of agglomeration. Cambridge University Press, Cambridge

    Google Scholar 

  • Geoghegan J, Wainger LA, Bockstael NE (1997) Spatial landscape indices in a hedonic framework: an ecological economics analysis using GIS. Ecol Econ 23: 251–264

    Article  Google Scholar 

  • Hobden DW, Laughton GE, Morgan KE (2004) Green space borders—a tangible benefit? Evidence from four neighbourhoods in Surrey, British Columbia, 1980–2001. Land Use Policy 21: 129–138

    Article  Google Scholar 

  • INSEE (1990) Annuaire rétrospectif de la France, 1948–1988, p 658

  • INSEE (2001) Les déplacements domicile-travail, Insee Première, 767, avril 2001, p 4

  • Irwin EG (2002) The effects of open space on residential property values. Land Econ 78: 465–480

    Article  Google Scholar 

  • Krugman P (1991) Increasing returns and economic geography. J Polit Econ 99: 483–499

    Article  Google Scholar 

  • Lucas RE, Rossi-Hansberg E (2002) On the internal structure of cities. Econometrica 70: 1445–1476

    Article  Google Scholar 

  • MacLennan M, Fotheringham S, Batty M, Longley P (1991) Fractal geometry and spatial phenomena: a bibliography, NCGIA report 91-1.

  • Marshall E (2004) Open-space amenities, interacting agents, and equilibrium landscape structure. Land Econ 80: 272–293

    Article  Google Scholar 

  • Mooney S, Eisgruber LM (2001) The influence of riparian protection measures on residential property values: the case of the Oregon plan for salmon and watersheds. J Real Estate Finance Econ 22: 273–286

    Article  Google Scholar 

  • Ogawa M, Fujita H (1982) Multiple equilibria and structural transition of non-monocentric urban configurations. Reg Sci Urban Econ 12: 166–196

    Google Scholar 

  • Ottaviano GIP, Tabuchi T, Thisse JF (2002) Agglomeration and trade revisited. Int Econ Rev 43: 409–436

    Article  Google Scholar 

  • Paterson RW, Boyle KJ (2002) Out of sight, out of mind? Using GIS to incorporate visibility in hedonic property value models. Land Econ 78: 417–425

    Article  Google Scholar 

  • Roe B, Irwin EG, Morrow-Jones HA (2004) The effects of farmland, farmland preservation, and other neighborhood amenities on housing values and residential growth. Land Econ 80: 55–75

    Article  Google Scholar 

  • Thomas I, Frankhauser P, De Keersmaecker ML (2007) Fractal dimension versus density of the built-up surfaces in the periphery of Brussels. Papers Reg Sci 86: 287–307

    Article  Google Scholar 

  • Thomas I, Frankhauser P, Biernacki C (2008) The morphology of built-up landscapes in Wallonia (Belgium); a classification using fractal indices. Landsc Urban Plan 84: 99–115

    Article  Google Scholar 

  • Thorsnes P (2002) The value of a suburban forest preserve: estimates from sales of vacant residential building lots. Land Econ 78: 426–441

    Article  Google Scholar 

  • Turner MA (2005) Landscape preferences and patterns of residential development. J Urban Econ 57: 19–54

    Article  Google Scholar 

  • Tyrvainen L, Miettinen A (2000) Property prices and urban forest amenities. J Environ Econ Manag 39: 205–223

    Article  Google Scholar 

  • White R, Engelen G (1993) Cellular automata and fractal urban form: a cellular modelling approach to the evolution of urban land use patterns. Environ Plan A 25: 1175–1199

    Article  Google Scholar 

  • White R, Engelen G (1994) Cellular dynamics and GIS: modelling spatial complexity. Geogr Syst 1: 237–253

    Google Scholar 

  • Wu JJ, Plantinga AJ (2003) The influence of public open space on urban spatial structure. J Environ Econ Manag 46: 288–309

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Cavailhès.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavailhès, J., Frankhauser, P., Peeters, D. et al. Residential equilibrium in a multifractal metropolitan area. Ann Reg Sci 45, 681–704 (2010). https://doi.org/10.1007/s00168-009-0316-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00168-009-0316-5

JEL Classification