Bacterial biofilm formation is variably inhibited by different formulations of antibiotic-loaded bone cement in vitro | Knee Surgery, Sports Traumatology, Arthroscopy Skip to main content

Advertisement

Log in

Bacterial biofilm formation is variably inhibited by different formulations of antibiotic-loaded bone cement in vitro

  • Experimental Study
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

The aim of the present study was to quantitatively assess biofilm growth on the surface of bone cements discs containing different antibiotics, including colistin and linezolid. Biofilms of methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, and Staphylococcus epidermidis were grown on bone cement discs for 96 h.

Methods

Biofilm amounts were measured by confocal laser microscopy using live/dead staining and dedicated software at different time intervals (48, 72, and 96 h).

Results

Bone cement containing vancomycin was not effective at reducing MRSA biofilm formation 96 h following bacterial inoculation. At a comparable time interval, linezolid-, clindamycin-, and aminoglycoside-loaded cement was still active against this biofilm. At the 72- and 96-h observations, S. epidermidis biofilm was present only on tobramycin and gentamicin discs. P. aeruginosa biofilms were present on cement discs loaded with colistin at all time intervals starting from the 48-h observation, whereas no biofilms were detected on tobramycin or gentamicin discs.

Conclusion

Bone cements containing different antibiotics have variable and time-dependent windows of activity in inhibiting or reducing surface biofilm formation. The effectiveness of bone cement containing vancomycin against MRSA biofilm is questionable. The present study is clinically relevant, because it suggests that adding the right antibiotic to bone cement could be a promising approach to treat periprosthetic infections. Indeed, the antibiofilm activity of different antibiotic-loaded bone cements could be preoperatively assessed using the current methodology in two-stage exchange procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ALBC:

Antibiotic-loaded bone cement

BHI:

Brain–heart infusion

CLSM:

Confocal laser scanning microscopy

3D:

Three dimensions

MRSA:

Methicillin-resistant Staphylococcus aureus

PBS:

Phosphate-buffered saline

PI:

Propidium iodide

PMMA:

Polymethylmethacrylate

SCVs:

Small colony variants

References

  1. Anagnostakos K, Hitzler P, Pape D, Kohn D, Kelm J (2008) Persistence of bacterial growth on antibiotic-loaded beads: is it actually a problem? Acta Orthop 79:302–307

    Article  PubMed  Google Scholar 

  2. Anagnostakos K, Kelm J, Grun S, Schmitt E, Jung W, Swoboda S (2008) Antimicrobial properties and elution kinetics of linezolid-loaded hip spacers in vitro. J Biomed Mater Res B Appl Biomater 87:173–178

    Article  CAS  PubMed  Google Scholar 

  3. Anagnostakos K, Wilmes P, Schmitt E, Kelm J (2009) Elution of gentamicin and vancomycin from polymethylmethacrylate beads and hip spacers in vivo. Acta Orthop 80:193–197

    Article  PubMed  PubMed Central  Google Scholar 

  4. Anguita-Alonso P, Rouse MS, Piper KE, Jacofsky DJ, Osmon DR, Patel R (2006) Comparative study of antimicrobial release kinetics from polymethylmethacrylate. Clin Orthop Relat Res 445:239–244

    PubMed  Google Scholar 

  5. Balato G, Ascione T, Rosa D et al (2015) Release of gentamicin from cement spacers in two-stage procedures for hip and knee prosthetic infection: an in vivo pharmacokinetic study with clinical follow-up. J Biol Regul Homeost Agents 29:63–72

    CAS  PubMed  Google Scholar 

  6. Bertazzoni Minelli E, Benini A, Samaila E et al (2015) Antimicrobial activity of gentamicin and vancomycin combination in joint fluids after antibiotic-loaded cement spacer implantation in two-stage revision surgery. J Chemother 27:17–24

    Article  CAS  PubMed  Google Scholar 

  7. Bertazzoni Minelli E, Della Bora T, Benini A (2011) Different microbial biofilm formation on polymethylmethacrylate (PMMA) bone cement loaded with gentamicin and vancomycin. Anaerobe 17:380–383

    Article  CAS  PubMed  Google Scholar 

  8. Christensen GD, Simpson WA, Younger JJ et al (1985) Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol 22:996–1006

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Corona PS, Espinal L, Rodríguez-Pardo D et al (2014) Antibiotic susceptibility in gram-positive chronic joint arthroplasty infections: increased aminoglycoside resistance rate in patients with prior aminoglycoside-impregnated cement spacer use. J Arthroplasty 29:1617–1621

    Article  PubMed  Google Scholar 

  10. Drago L, Agrappi S, Bortolin M, Toscano M, Romanò CL, De Vecchi E (2016) How to study biofilms after microbial colonization of materials used in orthopaedic implants. Int J Mol Sci 17:293–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Drenkard E, Ausubel FM (2002) Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature 416:740–743

    Article  CAS  PubMed  Google Scholar 

  12. Ensing GT, Van Horn JR, Van Der Mei HC, Busscher HJ, Neut D (2008) Copal bone cement is more effective in preventing biofilm formation than Palacos R-G. Clin Orthop Relat Res 466:1492–1498

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gasparini G, De Gori M, Calonego G, Della Bora T, Caroleo B, Galasso O (2014) Drug elution from high-dose antibiotic-loaded acrylic cement: a comparative, in vitro study. Orthopedics 37:e999–e1005

    Article  PubMed  Google Scholar 

  14. Gbejuade HO, Lovering AM, Webb JC (2015) The role of microbial biofilms in prosthetic joint infections. Acta Orthop 86:147–158

    Article  PubMed  PubMed Central  Google Scholar 

  15. Griffin JW, Guillot SJ, Redick JA, Browne JA (2012) Removed antibiotic-impregnated cement spacers in two-stage revision joint arthroplasty do not show biofilm formation in vivo. J Arthroplasty 27:1796–1799

    Article  PubMed  Google Scholar 

  16. Hendriks JGE, Neut D, van Horn JR, van der Mei HC, Bussche (2005) Bacterial survival in the interfacial gap in gentamicin-loaded acrylic bone cements. J Bone Jt Surg Br 87:272–276

    Article  CAS  Google Scholar 

  17. Howlin RP, Brayford MJ, Webb JS, Cooper JJ, Aiken SS, Stoodley P (2015) Antibiotic-loaded synthetic calcium sulfate beads for prevention of bacterial colonization and biofilm formation in periprosthetic infections. Antimicrob Agents Chemother 59:111–120

    Article  CAS  PubMed  Google Scholar 

  18. Lenhard JR, von Eiff C, Hong IS et al (2015) Evolution of Staphylococcus aureus under vancomycin selective pressure: the role of the small-colony variant phenotype. Antimicrob Agents Chemother 59:1347–1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mariconda M, Ascione T, Balato G et al (2013) Sonication of antibiotic-loaded cement spacers in a two-stage revision protocol for infected joint arthroplasty. BMC Musculoskelet Disord 14:193–200

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mutimer J, Gillespie G, Lovering AM, Porteous AJ (2009) Measurements of in vivo intra-articular gentamicin levels from antibiotic loaded articulating spacers in revision total knee replacement. Knee 16:39–41

    Article  CAS  PubMed  Google Scholar 

  21. Neut D, Hendriks JG, van Horn JR, van der Mei HC, Busscher HJ (2005) Pseudomonas aeruginosa biofilm formation and slime excretion on antibiotic-loaded bone cement. Acta Orthop 76:109–114

    Article  PubMed  Google Scholar 

  22. Neut D, van de Belt H, Stokroos I et al (2001) Biomaterial-associated infection of gentamicin-loaded PMMA beads in orthopaedic revision surgery. J Antimicrob Chemother 47:885–891

    Article  CAS  PubMed  Google Scholar 

  23. Oga M, Arizono T, Sugioka Y (1992) Inhibition of bacterial adhesion by tobramycin-impregnated PMMA bone cement. Acta Orthop Scand 63:301–304

    Article  CAS  PubMed  Google Scholar 

  24. Peñalba Arias P, Furustrand Tafin U, Bétrisey B, Vogt S, Trampuz A, Borens O (2015) Activity of bone cement loaded with daptomycin alone or in combination with gentamicin or PEG600 against Staphylococcus epidermidis biofilms. Injury 46:249–253

    Article  PubMed  Google Scholar 

  25. Proctor RA, Peters G (1998) Small colony variants in staphylococcal infections: diagnostic and therapeutic implications. Clin Infect Dis 27:419–422

    Article  CAS  PubMed  Google Scholar 

  26. Rosenthal AL, Rovell JM, Girard AE (1976) Polyacrylic bone cement containing erythromycin and colistin: I. In vitro bacteriological activity and diffusion properties of erythromycin, colistin and erythromycin/colistin combination. J Int Med Res 4:296–304

    Article  CAS  PubMed  Google Scholar 

  27. Ruzaimi MY, Shahril Y, Masbah O, Salasawati H (2006) Antimicrobial properties of erythromycin and colistin impregnated bone cement: an in vitro analysis. Med J Malaysia 61:S21–S26

    Google Scholar 

  28. Schmolders J, Hischebeth GTR, Friedrich MJ et al (2014) Evidence of MRSE on a gentamicin and vancomycin impregnated polymethyl-methacrylate (PMMA) bone cement spacer after two-stage exchange arthroplasty due to periprosthetic joint infection of the knee. BMC Infect Dis 14:144–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Snir N, Meron-Sudai S, Deshmukh AJ, Dekel S, Ofek I (2013) Antimicrobial properties and elution kinetics of linezolid from polymethylmethacrylate. Orthopedics 36:e1412–e1417

    Article  PubMed  Google Scholar 

  30. Sorlí L, Puig L, Torres-Claramunt R et al (2012) The relationship between microbiology results in the second of a two-stage exchange procedure using cement spacers and the outcome after revision total joint replacement for infection: the use of sonication to aid bacteriological analysis. J Bone Jt Surg Br 94:249–253

    Article  Google Scholar 

  31. Sterling GJ, Crawford S, Potter JH et al (2003) The pharmacokinetics of simplex-tobramycin bone cement. J Bone Jt Surg Br 85:646–649

    Article  CAS  Google Scholar 

  32. Stoodley P, Nistico L, Johnson S et al (2008) Direct demonstration of viable Staphylococcus aureus biofilms in an infected total joint arthroplasty. A case report. J Bone Jt Surg Am 90:1751–1758

    Article  Google Scholar 

  33. Tsuji BT, von Eiff C, Kelchlin PA, Forrest A, Smith PF (2008) Attenuated vancomycin bactericidal activity against Staphylococcus aureus hemB mutants expressing the small-colony-variant phenotype. Antimicrob Agents Chemother 52:1533–1537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. van de Belt H, Neut D, Schenk W, van Horn JR, van der Mei HC, Busscher HJ (2001) Staphylococcus aureus biofilm formation on different gentamicin-loaded polymethylmethacrylate bone cements. Biomaterials 22:1607–1611

    Article  PubMed  Google Scholar 

  35. von Eiff C, Bettin D, Proctor RA, Rolauffs B, Lindner N, Winkelmann W, Peters G (1997) Recovery of small colony variants of Staphylococcus aureus following gentamicin bead placement for osteomyelitis. Clin Infect Dis 25:1250–1251

    Article  Google Scholar 

  36. Wang J, Zhu C, Cheng T et al (2013) A systematic review and meta-analysis of antibiotic-impregnated bone cement use in primary total hip or knee arthroplasty. PLoS One 8:e82745–e82753

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funding was received for this study.

Author information

Authors and Affiliations

Authors

Contributions

GB, MRC, ER, OG, GG, and MM worked on conception and study design. GB, ER, and AV performed sample acquisition and data testing. All authors played a role in data analysis and interpretation. GB, ER, MRC, TA, and MM drafted the manuscript. All authors played a role in critical review and revision of final manuscript.

Corresponding author

Correspondence to Giovanni Balato.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Research ethics committee

Institutional Review Board (IRB) approval is not required due to in vitro study design.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balato, G., Roscetto, E., Vollaro, A. et al. Bacterial biofilm formation is variably inhibited by different formulations of antibiotic-loaded bone cement in vitro. Knee Surg Sports Traumatol Arthrosc 27, 1943–1952 (2019). https://doi.org/10.1007/s00167-018-5230-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-018-5230-x

Keywords

Navigation