Abstract
The stick-slip phenomenon, at the basis of friction, is crucial for several applications ranging from nanotechnology and biophysics to mechanics and geology. Deep understanding of friction mechanisms and, in particular, the methodologies for its reduction must be sought in its nanoscopic nature, where atomic interactions and stick-slip processes play a crucial role. At this scale, thermal fluctuations clearly have a major effect on the physics of the problem. Hence, we develop here a theory for rate-independent stick-slip, based on equilibrium statistical mechanics. In particular, we introduce suitably modified Prandtl–Tomlinson and Frenkel–Kontorova models in order to study the system with one particle and the chain with N particles, respectively. The adopted corrugated substrate is composed of a sequence of quadratic wells. Interestingly, the calculation of corresponding partition functions shows a conceptual link with the theory of Jacobi and Riemann theta functions, allowing an efficient determination of the average static frictional force and other relevant quantities. We show some applications including the study of structural lubricity and thermolubricity.
Similar content being viewed by others
References
Gao, J., Luedtke, W.D., Gourdon, D., Ruths, M., Israelachvili, J.N., Landman, U.: Frictional forces and Amontons’ law: from the molecular to the macroscopic scale. J. Phys. Chem. B 108, 3410–3425 (2004)
Urbakh, M., Klafter, J., Gourdon, D., Israelachvili, J.: The nonlinear nature of friction. Nature 430, 525–528 (2004)
Vanossi, A., Manini, N., Urbakh, M., Zapperi, S., Tosatti, E.: Colloquium: modeling friction: from nanoscale to mesoscale. Rev. Mod. Phys. 85, 529–552 (2013)
Vakis, A.I., Yastrebov, V.A., Scheibert, J., Nicola, L., Dini, D., Minfray, C., Almqvist, A., Paggi, M., Lee, S., Limbert, G., Molinari, J. F., Anciaux, G., Aghababaei, R., Echeverri Restrepo, S., Papangelo, A., Cammarata, A., Nicolini, P., Putignano, C., Carbone, G., Stupkiewicz, S., Lengiewicz, J., Costagliola, G., Bosia, F., Guarino, R., Pugno, N.M., Müser, M. H., Ciavarella, M.: Modeling and simulation in tribology across scales: an overview. Tribol. Int. 125, 169–199 (2018)
Ternes, M., Lutz, C.P., Hirjibehedin, C.F., Giessibl, F.J., Heinrich, A.J.: The force needed to move an atom on a surface. Science 319, 1066–1069 (2008)
Szlufarska, I., Chandross, M., Carpick, R.W.: Recent advances in single-asperity nanotribology. J. Phys. D: Appl. Phys. 41, 123001 (2008)
Mo, Y., Turner, K.T., Szlufarska, I.: Friction laws at the nanoscale. Nature 457, 1116 (2009)
Krylov, S.Y., Frenken, J.W.M.: The physics of atomic-scale friction: basic considerations and open questions. Phys. Status Solidi 251, 711–736 (2014)
Manini, N., Mistura, G., Paolicelli, G., Tosatti, E., Vanossi, A.: Current trends in the physics of nanoscale friction. Adv. Phys.: X 2, 569–590 (2017)
Bormuth, V., Varga, V., Howard, J., Schäffer, E.: Protein friction limits diffusive and directed movements of Kinesin motors on microtubules. Science 325, 870 (2009)
Sahli, R., Pallares, G., Ducottet, C., Ben Ali, I. E., Al Akhrass, S., Guibert, M., Scheibert, J.: Evolution of real contact area under shear and the value of static friction of soft materials. PNAS 115, 471–476 (2018)
Sens, P.: Stick-slip model for actin-driven cell protrusions, cell polarization, and crawling. PNAS 117, 24670–24678 (2020)
Liamas, E., Connell, S.D., Ramakrishna, S.N., Sarkar, A.: Probing the frictional properties of soft materials at the nanoscale. Nanoscale 12, 2292 (2020)
Holmberg, K., Matthews, A., Ronkainen, H.: Coatings tribology—contact mechanisms and surface design. Tribol. Int. 31, 107–120 (1998)
Popov, V.L.: Contact Mechanics and Friction: Physical Principles and Applications. Springer-Verlag, Berlin (2010)
Holmberg, K., Erdemir, A.: Influence of tribology on global energy consumption, costs and emissions. Friction 5, 263–284 (2017)
Białas, M., Maciejewski, J., Kucharski, S.: Friction coefficient of solid lubricating coating as a function of contact pressure: experimental results and microscale modeling. Continuum Mech. Thermodyn. 33, 1733–1745 (2021)
Scholz, C.H.: Earthquakes and friction laws. Nature (London) 391, 37 (1998)
Marone, C.: The effect of loading rate on static friction and the rate of fault healing during the earthquake cycle. Nature 391, 69 (1998)
Daub, E.G., Carlson, J.M.: Friction, Fracture, and Earthquakes. Ann. Rev. Condens. Matter Phys. 1, 397–418 (2010)
Fried, E.: Energy release, friction, and supplemental relations at phase interfaces. Continuum Mech. Thermodyn. 7, 111–121 (1995)
Amitrano, D., Grasso, J.R., Hantz, D.: From diffuse to localised damage through elastic interaction. Geophys. Res. Lett. 26, 2109–2112 (1999)
Gerde, E., Marder, M.: Friction and fracture. Nature 413, 285 (2001)
Kresse, O., Truskinovsky, L.: Lattice friction for crystalline defects: from dislocations to cracks. J. Mech. Phys. Sol. 52, 2521–2543 (2004)
Gimbert, F., Amitrano, D., Weiss, J.: Crossover from quasi-static to dense flow regime in compressed frictional granular media. EPL 104, 46001 (2013)
Biscari, P., Urbano, M.F., Zanzottera, A., Zanzotto, G.: Intermittency in crystal plasticity informed by lattice symmetry. J. Elastic. 123, 85–96 (2016)
Karimi, K., Amitrano, D., Weiss, J.: From plastic flow to brittle fracture: role of microscopic friction in amorphous solids. Phys. Rev. E 100, 012908 (2019)
Gorbushin, N., Mishuris, G., Truskinovsky, L.: Frictionless motion of lattice defects. Phys. Rev. Lett. 125, 195502 (2020)
Dowson, D.: History of Tribology. Wiley, New York (1998)
de Geus, T.W.J., Popovic, M., Ji, W., Rosso, A., Wyart, M.: How collective asperity detachments nucleate slip at frictional interfaces. PNAS 116, 23977–23983 (2019)
Jacobs, T.D.B., Martini, A.: Measuring and understanding contact area at the nanoscale: a review. Appl. Mech. Rev. 69, 060802 (2017)
Binnig, G., Quate, C.F., Gerber, C.: Atomic Force Microscope. Phys. Rev. Lett. 56, 930 (1986)
Israelachvili, J.N.: Adhesion forces between surfaces in liquids and condensable vapours. Surf. Sci. Rep. 14, 109 (1992)
Dong, Y., Li, Q., Martini, A.: Molecular dynamics simulation of atomic friction: a review and guide. J. Vac. Sci. Technol. A 31, 030801 (2013)
Bonelli, F., Manini, N., Cadelano, E., Colombo, L.: Atomistic simulations of the sliding friction of graphene flakes. Eur. Phys. J. B 70, 449–459 (2009)
Luan, B.Q., Hyun, S., Molinari, J.F., Bernstein, N., Robbins, M.O.: Multiscale modeling of two-dimensional contacts. Phys. Rev. E 74, 046710 (2006)
Wolloch, M., Levita, G., Restuccia, P., Righi, M.C.: Interfacial charge density and its connection to adhesion and frictional forces. Phys. Rev. Lett. 121, 026804 (2018)
Prandtl, L.: Ein Gedankenmodell zur kinetischen Theorie der festen Körper. Z. Angew. Math. Mech. 8, 85 (1928)
Tomlinson, G.A.: A molecular theory of friction. Philos. Mag. 7, 905 (1929)
Popov, V.L., Gray, J.A.T.: Prandtl–Tomlinson model: history and applications in friction, plasticity, and nanotechnologies. Z. Angew. Math. Mech. 92, 683–708 (2012)
Schwarz, U.D., Hölscher, H.: Exploring and Explaining Friction with the Prandtl-Tomlinson Model. ACS Nano 10, 38–41 (2016)
Sang, Y., Dubé, M., Grant, M.: Thermal effects on atomic friction. Phys. Rev. Lett. 87, 174301 (2001)
Riedo, E., Gnecco, E., Bennewitz, R., Meyer, E., Brune, H.: Interaction potential and hopping dynamics governing sliding friction. Phys. Rev. Lett. 91, 084502 (2003)
Krylov, SYu., Jinesh, K.B., Valk, H., Dienwiebel, M., Frenken, J.W.M.: Thermally induced suppression of friction at the atomic scale. Phys. Rev. E 71, 065101(R) (2005)
Yu Krylov, S., Frenken, J.W.M.: The crucial role of temperature in atomic scale friction. J. Phys.: Condens. Matter 20, 354003 (2008)
Jinesh, K.B., Krylov, SYu., Valk, H., Dienwiebel, M., Frenken, J.W.M.: Thermolubricity in atomic-scale friction. Phys. Rev. B 78, 155440 (2008)
Jansen, L., Hölscher, H., Fuchs, H., Schirmeisen, A.: Temperature Dependence of Atomic-Scale Stick-Slip Friction. Phys. Rev. Lett. 104, 256101 (2010)
Perez, D., Dong, Y., Martini, A., Voter, A.F.: Rate theory description of atomic stick-slip friction. Phys. Rev. B 81, 245415 (2010)
Martin, H.: Müser, Velocity dependence of kinetic friction in the Prandtl-Tomlinson model. Phys. Rev. B 84, 125419 (2011)
Dong, Y., Vadakkepatt, A., Martini, A.: Analytical Models for Atomic Friction. Tribol. Lett. 44, 367–386 (2011)
Torche, P.C., Polcar, T., Hovorka, O.: Thermodynamic aspects of nanoscale friction. Phys. Rev. B 100, 125431 (2019)
Socoliuc, A., Bennewitz, R., Gnecco, E., Meyer, E.: Transition from stick-slip to continuous sliding in atomic friction: entering a new regime of ultralow friction. Phys. Rev. Lett. 92, 134301 (2004)
Dehlinger, U.: Zur Theorie der Rekristallisation reiner Metalle. Ann. Phys. (Leipzig) 394, 749 (1929)
Kontorova, T.A., Frenkel, Ya.. I.: On the theory of the plastic deformation and twinning. Zh. Eksp. Teor. Fiz. 8, 89–95 (1938)
Kontorova, T. A., Frenkel, Ya. I.: On the theory of plastic deformation and twinning. II. Zh. Eksp. Teor. Fiz. 8, 1340–1348 (1938)
Kontorova, T.A., Frenkel, Y.I.: On the theory of plastic deformation and twinning. III. Zh. Eksp. Teor. Fiz. 8, 1349–1358 (1938)
Pokrovskij, V.L., Talapov, A.L.: Theory of Incommensurate Crystals. Harwood Academic Publishers, New York (1984)
Braun, O.M., Kivshar, Yu.S.: Nonlinear dynamics of the Frenkel–Kontorova model. Phys. Rep. 306, 1–108 (1998)
Braun, O.M., Kivshar, Yu.S.: The Frenkel–Kontorova Model: Concepts, Methods, and Applications. Springer, Berlin (2004)
Bour, E.: Théorie de la déformation des surfaces. Journal de l’École Impériale Polytechnique 19, 1–48 (1862)
Peierls, R.E.: The size of a dislocation. Proc. Phys. Soc. 52, 34 (1940)
Nabarro, F.R.N.: Dislocations in a simple cubic lattice. Proc. Phys. Soc. 59, 256 (1947)
Hirthand, J.P., Lothe, J.: Theory of Dislocations. Wiley, New York (1982)
Aubry, S.: The twist map, the extended Frenkel–Kontorova model and the devil’s staircase. Phys. D 7, 240–258 (1983)
Aubry, S.: Devil’s staircase and order without periodicity in classical condensed matter. J. Physique 44, 147–162 (1983)
Peyrard, M., Aubry, S.: Critical behaviour at the transition by breaking of analyticity in the discrete Frenkel-Kontorova model. J. Phys. C: Solid State Phys. 16, 1593–1608 (1983)
Biham, O., Mukamel, D.: Global universality in the Frenkel–Kontorova model. Phys. Rev. A 39, 5326–5335 (1989)
Braiman, Y., Baumgarten, J., Jortner, J., Klafter, J.: Symmetry-breaking transition in finite Frenkel–Kontorova chains. Phys. Rev. Lett. 65, 2398 (1990)
Sharma, S.R., Bergersen, B., Joos, B.: Aubry transition in a finite modulated chain. Phys. Rev. B 29, 6335 (1984)
Pruttivarasin, T., Ramm, M., Talukdar, I., Kreuter, A., Häffner, H.: Trapped ions in optical lattices for probingoscillator chain models. New J. Phys. 13, 075012 (2011)
Benassi, A., Vanossi, A., Tosatti, E.: Nanofriction in cold ion traps. Nat. Comm. 2, 236 (2011)
Bylinskii, A., Gangloff, D., Counts, I., Vuletić, V.: Observation of Aubry-type transition in finite atom chains via friction. Nat. Mat. 15, 717 (2016)
Kiethe, J., Nigmatullin, R., Kalincev, D., Schmirander, T., Mehlstäubler, T.E.: Probing nanofriction and Aubry-type signatures in a finite self-organized system. Nat. Commun. 8, 15364 (2017)
Gangloff, D.A., Bylinskii, A., Vuletić, V.: Kinks and nanofriction: structural phases in few-atom chains. Phys. Rev. Res. 2, 013380 (2020)
Brazda, T., Silva, A., Manini, N., Vanossi, A., Guerra, R., Tosatti, E., Bechinger, C.: Experimental Observation of the Aubry Transition in Two-Dimensional Colloidal Monolayers. Phys. Rev. X 8, 011050 (2018)
Rosenberg, R.: Why Is Ice Slippery? Phys. Today 58, 50–55 (2005)
Mabuchi, K., Tanaka, K., Uchijima, D., Sakai, R.: Frictional coefficient under banana skin. Tribol. Online 7, 147–151 (2012)
Baykara, M.Z., Vazirisereshk, M.R., Martini, A.: Emerging superlubricity: a review of the state of the art and perspectives on future research. Appl. Phys. Rev. 5, 041102 (2018)
Kumar, A.: Advancements in emerging superlubricity: A review of the atomistic models, simulation techniques and their applications to explore the state of ultra-low friction. Materials Today: Proceedings 42, 884–892 (2021)
Hirano, M., Shinjo, K.: Atomistic locking and friction. Phys. Rev. B 41, 11837 (1990)
Shinjo, K., Hirano, M.: Dynamics of friction: superlubric state. Surf. Sci. 283, 473 (1993)
Muser, M.H.: Structural lubricity: Role of dimension and symmetry. Europhys. Lett. 66, 97 (2004)
Hirano, M., Shinjo, K., Kaneko, R., Murata, Y.: Observation of Superlubricity by Scanning Tunneling Microscopy. Phys. Rev. Lett. 78, 1448 (1997)
Dienwiebel, M., Verhoeven, G.S., Pradeep, N., Frenken, J.W.M., Heimberg, J.A., Zandbergen, H.W.: Superlubricity of Graphite. Phys. Rev. Lett. 92, 126101 (2004)
Koren, E., Lörtscher, E., Rawlings, C., Knoll, A.W., Duerig, U.: Adhesion and friction in mesoscopic graphite contacts. Science 348, 679 (2015)
Kawai, S., Benassi, A., Gnecco, E., Soede, H., Pawlak, R., Feng, X., Muellen, K., Passerone, D., Pignedoli, C.A., Ruffieux, P., Fasel, R., Meyer, E.: Sup erlubricity of graphene nanoribbons on gold surfaces. Science 351, 957 (2016)
Restuccia, P., Ferrario, M., Righi, M.C.: Monitoring water and oxygen splitting at graphene edges and folds: Insights into the lubricity of graphitic materials. Carbon 156, 93–103 (2020)
Losi, G., Restuccia, P., Righi, M.C.: Superlubricity in phosphorene identified by means of ab initio calculations. 2D Mater. 7, 025033 (2020)
Zhao, X., Phillpot, S.R., Sawyer, W.G., Sinnott, S.B., Perry, S.S.: Transition from Thermal to Athermal Friction under Cryogenic Conditions. Phys. Rev. Lett. 102, 186102 (2009)
Barel, I., Urbakh, M., Jansen, L., Schirmeisen, A.: Multibond dynamics of nanoscale friction: the role of temperature. Phys. Rev. Lett. 104, 066104 (2010)
Giordano, S.: Spin variable approach for the statistical mechanics of folding and unfolding chains. Soft Matter 13, 6877–6893 (2017)
Caruel, M., Truskinovsky, L.: Statistical mechanics of the Huxley-Simmons model. Phys. Rev. E 93, 062407 (2016)
Caruel, M., Truskinovsky, L.: Physics of muscle contraction. Rep. Prog. Phys. 81, 036602 (2018)
Benedito, M., Giordano, S.: Thermodynamics of small systems with conformational transitions: the case of two-state freely jointed chains with extensible units. J. Chem. Phys. 149, 054901 (2018)
Benedito, M., Giordano, S.: Isotensional and isometric force-extension response of chains with bistable units and Ising interactions. Phys. Rev. E 98, 052146 (2018)
Florio, G., Puglisi, G.: Unveiling the influence of device stiffness in single macromolecule unfolding. Sci. Rep. 9, 4997 (2019)
Bellino, L., Florio, G., Puglisi, G.: The influence of device handles in single-molecule experiments. Soft Matter 15, 8680–8690 (2019)
Florio, G., Puglisi, G., Giordano, S.: Role of temperature in the decohesion of an elastic chain tethered to a substrate by onsite breakable links. Phys. Rev. Res. 2, 033227 (2020)
Cannizzo, A., Florio, G., Puglisi, G., Giordano, S.: Temperature controlled decohesion regimes of an elastic chain adhering to a fixed substrate by softening and breakable bonds. J. Phys. A: Math. Theor. 54, 445001 (2021)
Bellino, L., Florio, G., Giordano, S., Puglisi, G.: On the competition between interface energy and temperature in phase transition phenomena. Appl. Eng. Sci. 2, 100009 (2020)
Cannizzo, A., Bellino, L., Florio, G., Puglisi, G., Giordano, S.: Thermal control of nucleation and propagation transition stresses in discrete lattices with non-local interactions and non-convex energy. Eur. Phys. J. Plus 137, 569 (2022)
Prados, A., Carpio, A., Bonilla, L.L.: Sawtooth patterns in force-extension curves of biomolecules: an equilibrium-statistical-mechanics theory. Phys. Rev. E 88, 012704 (2013)
Bonilla, L.L., Carpio, A., Prados, A.: Theory of force-extension curves for modular proteins and DNA hairpins. Phys. Rev. E 91, 052712 (2015)
De Tommasi, D., Millardi, N., Puglisi, G., Saccomandi, G.: An energetic model for macromolecules unfolding in stretching experiments. J. R. Soc. Interface 10, 20130651 (2013)
Benichou, I., Givli, S.: Structures undergoing discrete phase transformation. J. Mech. Phys. Sol. 61, 94 (2013)
Kramers, H.A.: Brownian motion in a field of force and the diffusion model of chemical reactions. Physica (The Hague) 7, 284 (1940)
Manca, F., Giordano, S., Palla, P.L., Zucca, R., Cleri, F., Colombo, L.: Elasticity of flexible and semiflexible polymers with extensible bonds in the Gibbs and Helmholtz ensembles. J. Chem. Phys. 136, 154906 (2012)
Weiner, J.H.: Statistical Mechanics of Elasticity. Dover Publications, New York (1983)
Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis. Cambridge University Press, Cambridge UK (2021)
Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series and Products. Academic Press, San Diego (1965)
Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover Publication, New York (1970)
Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST Handbook of Mathematical Functions. National Institute of Standards and Technology and Cambridge University Press, New York (2010)
Bellman, R.: A brief introduction to theta functions. Rinehart and Co., New York, Holt (1961)
Bellman, R., Lehman, R.S.: The Reciprocity Formula for Multidimensional Theta Functions. Proc. Am. Math. Soc. 12, 954–961 (1961)
Deconinck, B., Heil, M., Bobenko, A., Van Hoeij, M., Schmies, M.: Computing Riemann Theta Functions. Math. Comput. 73, 1417–1442 (2003)
Petukhov, B.V., Bartsch, M., Messerschmidt, U.: Temperature dependence of the flow stress and the strain rate sensitivity at the transition from the Peierls mechanism to pinning by localized obstacles. Eur. Phys. J. Appl. Phys. 9, 89–95 (2000)
Cordier, P., Amodeo, J., Carrez, P.: Modelling the rheology of MgO under Earth’s mantle pressure, temperature and strain rates. Nature 481, 177 (2012)
Kamimura, Y., Edagawa, K., Takeuchi, S.: Experimental evaluation of the Peierls stresses in a variety of crystals and their relation to the crystal structure. Acta Materialia 61, 294–309 (2013)
Amodeo, J., Merkel, S., Tromas, C., Carrez, P., Korte-Kerzel, S., Cordier, P., Chevalier, J.: Dislocations and plastic deformation in MgO crystals: a review. Crystals 8, 240 (2018)
Curry, J.F., Hinkle, A.R., Babuska, T.F., Wilson, M.A., Dugger, M.T., Krick, B.A., Argibay, N., Chandross, M.: Atomistic origins of temperature-dependent shear strength in 2D materials. ACS Appl. Nano Mater. 1, 5401–5407 (2018)
Fajardo, O.Y., Mazo, J.J.: Effects of surface disorder and temperature on atomic friction. Phys. Rev. B 82, 035435 (2010)
Peng, Y., Serfass, C.M., Kawazoe, A., Shao, Y., Gutierrez, K., Hill, C.N., Santos, V.J., Visell, Y., Hsiao, L.C.: Elastohydrodynamic friction of robotic and human fingers on soft micropatterned substrates. Nat. Mater. 20, 1707–1711 (2021)
Mergel, J.C., Scheibert, J., Sauer, R.A.: Contact with coupled adhesion and friction: Computational framework, applications, and new insights. J. Mech. Phys. Sol. 146, 104194 (2021)
Risken, H.: The Fokker–Planck equation. Springer, Berlin (1989)
Coffey, W.T., Kalmykov, Yu.P., Waldron, J.P.: The Langevin equation. World Scientific, Singapore (2004)
Benichou, I., Givli, S.: Rate Dependent Response of Nanoscale Structures Having a Multiwell Energy Landscape. Phys. Rev. Lett. 114, 095504 (2015)
Benichou, I., Zhang, Y., Dudko, O.K., Givli, S.: The rate dependent response of a bistable chain at finite temperature. J. Mech. Phys. Sol. 95, 44 (2016)
Funding
No funding was received to assist with the preparation of this manuscript.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Financial interest
The author certifies that he has no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.
Published article
All data generated or analyzed during this study are included in this published article.
Additional information
Communicated by Andreas Öchsner.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix A: reciprocal relation for Jacobi and Riemann theta functions
Appendix A: reciprocal relation for Jacobi and Riemann theta functions
In Appendix, we briefly discuss the conceptual relationship between direct and reciprocal Bravais lattices, Dirac comb, Poisson summation formula, and reciprocal relation for the Riemann theta function and third Jacobi theta function. We consider a Bravais lattice composed of points \(\vec {r}=n_1\vec {a}_1+...+n_N\vec {a}_N\in \mathbb {R}^N\) where \(n_j\in \mathbb {Z}\) and \(\vec {a}_j\in \mathbb {R}^N\) are the primitive vectors. We introduce a periodic sampling function \(f(\vec {x})\) on this Bravais lattice constructed by delta functions (Dirac comb)
To simplify the notation, we define a matrix \(\mathcal {C}\in \mathcal {M}_{N,N}(\mathbb {R})\) where the columns represent the vectors \(\vec {a}_j\). It means that \(\mathcal {C}=[\vec {a}_1\vert ...\vert \vec {a}_N]\) and we can write
with \(\vec {n}=(n_1,...,n_N)^T\). We assume that \(\mathcal {C}\) is not singular. Then, if we define \(\vec {\eta }\) such that \(\vec {x}=\mathcal {C}\vec {\eta }\), we have
Now, the function \(f(\vec {\eta })\) is multi-periodic with period one along all directions \(\eta _1,...,\eta _N\). Hence, it can be developed in Fourier series
where the coefficients are given by
In the set \([0,1]^N\), we have \(f(\vec {\eta })=\delta \left( \mathcal {C}\vec {\eta }\right) \), and therefore, we get
as we can easily prove by applying the substitution \(\vec {y}=\mathcal {C}\vec {\eta }\). Coming back to the variable \(\vec {x}\), we finally obtain
which is the Fourier series of the Dirac comb defined in Eq. (A1) or (A2). We can also determine the Fourier transform of the same function
Since \(\delta (\vec {q})=\int _{\mathbb {R}^N}e^{i\vec {q}\cdot \vec {x}}\mathrm {d}\vec {x}/(2\pi )^N\), we easily get
It means that if \(\vec {r}=\mathcal {C}\vec {n}\) \( \forall \vec {n}\in \mathbb {Z}^N\) is the direct Bravais lattice, then \(\vec {k}=2\pi \mathcal {C}^{-T}\vec {m} \) \(\forall \vec {m}\in \mathbb {Z}^N\) is the reciprocal Bravais lattice. In other words, the Dirac comb on the direct lattice is Fourier transformed into a Dirac comb on the reciprocal lattice. This property can be applied to find the so-called N-dimensional Poisson summation formula. We consider an arbitrary function \(\phi (\vec {x})\) for which the Fourier transform \(\Phi (\vec {k})\) exists. We define the replication or periodic summation
where f is defined in Eq. (A2) and \(*\) means convolution. Since the Fourier transform of the convolution is the product of the two Fourier transforms (convolution theorem), we have
Now, we can remember that the Fourier transform of \(e^{i\vec {x}\cdot \vec {v}}\) is given by \((2\pi )^N\delta (\vec {k}-\vec {v})\), and then from Eq. (A11) we come back to the original function \(g(\vec {x})\), eventually obtaining
which is the Fourier series of the periodic summation. For \(\vec {x}=0\), this result delivers the Poisson summation formula
We take now into account the following particular function \(\phi (\vec {x})\) with its Fourier transform \(\Phi (\vec {k})\)
where \(\mathcal {T}\in \mathcal {M}_{N,N}(\mathbb {C})\) with \(\mathcal {T}=\mathcal {T}^T\), \(\Im \text{ m }(\mathcal {T})>0\) and \(\vec {\sigma }\in \mathbb {C}^N\). To conclude, we substitute Eqs. (A14) and (A15) in the Poisson summation formula given in Eq. (A13) and we get, after straightforward calculations, the N-dimensional Jacobi reciprocal relation for the Riemann theta function
where we have identified \(\Omega =\mathcal {C}^T\mathcal {T}\mathcal {C}\) and \(\vec {z}=\mathcal {C}^T\vec {\sigma }\). This proves Eq. (47) of the main text. Other more refined properties of \(\Theta (\vec {z}\vert \Omega )\) can be found in the literature [112, 113]. The result given in Eq. (A16) can be specialized to the case with \(N=1\) by obtaining the original Jacobi identity
where we have conveniently compared the definitions of \(\vartheta _3\left( z,\tau \right) \) and \(\Theta (\vec {z}\vert \Omega )\) with \(N=1\) [112, 113]. This finally proves Eq. (17) of the main text as well.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Giordano, S. Statistical mechanics of rate-independent stick-slip on a corrugated surface composed of parabolic wells. Continuum Mech. Thermodyn. 34, 1343–1372 (2022). https://doi.org/10.1007/s00161-022-01129-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00161-022-01129-0