Abstract
Representing polymers by random walks on a lattice is a fruitful approach largely exploited to study configurational statistics of polymer chains and to develop efficient Monte Carlo algorithms. Nevertheless, the stretching and the folding/unfolding of polymer chains within the Gibbs (isotensional) and the Helmholtz (isometric) ensembles of the statistical mechanics have not been yet thoroughly analysed by means of the lattice methodology. This topic, motivated by the recent introduction of several single-molecule force spectroscopy techniques, is investigated in the present paper. In particular, we analyse the force–extension curves under the Gibbs and Helmholtz conditions and we give a proof of the ensembles equivalence in the thermodynamic limit for polymers represented by a standard random walk on a lattice. Then, we generalize these concepts for lattice polymers that can undergo conformational transitions or, equivalently, for chains composed of bistable or two-state elements (that can be either folded or unfolded). In this case, the isotensional condition leads to a plateau-like force–extension response, whereas the isometric condition causes a sawtooth-like force–extension curve, as predicted by numerous experiments. The equivalence of the ensembles is finally proved also for lattice polymer systems exhibiting conformational transitions.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Weiner, J.H.: Statistical Mechanics of Elasticity. Dover Publication Inc., New York (2002)
Doi, M.: Introduction to Polymer Physics. Clarendon, Oxford (1996)
Vanderzande, C.: Lattice Models of Polymers. Cambridge University Press, Cambridge (1998)
Janse van Rensburg, E.J.: Statistical Mechanics of Interacting Walks, Polygons, Animals and Vesicles. Oxford University Press Inc., New York (2000)
Flory, P.J.: Statistical Mechanics of Polymer Chains. Wiley, New York (1989)
Rubinstein, M., Colby, R.H.: Polymer Physics. Oxford University Press, New York (2003)
Binder, K. (ed.): The Monte Carlo Method in Condensed Matter Physics, Topics in Applied Physics, vol. 71. Springer, Berlin (1992)
Binder, K., Heermann, D.: Monte Carlo Simulation in Statistical Physics: An Introduction. Springer, Berlin (2010)
Halpin-Healy, T., Zhang, Y.C.: Kinetic roughening phenomena, stochastic growth, directed polymers and all that. Aspects of multidisciplinary statistical mechanics. Phys. Rep. 254, 215 (1995)
de Gennes, P.G.: Scaling Concepts in Polymer Physics. Cornell University Press, Ithaca (1979)
de Gennes, P.G.: Exponents for the excluded volume problem as derived by the Wilson method. Phys. Lett. A 38, 339 (1972)
Strick, T.R., Dessinges, M.-N., Charvin, G., Dekker, N.H., Allemand, J.-F., Bensimon, D., Croquette, V.: Stretching of macromolecules and proteins. Rep. Progr. Phys. 66, 1 (2002)
Neuman, K.C., Nagy, A.: Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nature Methods 5, 491 (2008)
Kumar, S., Li, M.S.: Biomolecules under mechanical force. Phys. Rep. 486, 1 (2010)
Bustamante, C., Liphardt, J., Ritort, F.: The nonequilibrium thermodynamics of small systems. Phys. Today 58, 43 (2005)
Dieterich, E., Camunas-Soler, J., Ribezzi-Crivellari, M., Seifert, U., Ritort, F.: Control of force through feedback in small driven systems. Phys. Rev. E 94, 012107 (2016)
Winkler, R.G.: Deformation of semiflexible chains. J. Chem. Phys. 118, 2919 (2003)
Marko, J.F., Siggia, E.D.: Stretching DNA. Macromolecules 28, 8759 (1995)
Glatting, G., Winkler, R.G., Reineker, P.: Partition function and force extension relation for a generalized freely jointed chain. Macromolecules 26, 6085 (1993)
Manca, F., Giordano, S., Palla, P.L., Zucca, R., Cleri, F., Colombo, L.: Elasticity of flexible and semiflexible polymers with extensible bonds in the Gibbs and Helmholtz ensembles. J. Chem. Phys. 136, 154906 (2012)
Manca, F., Giordano, S., Palla, P.L., Cleri, F., Colombo, L.: Response to comment on elasticity of flexible and semiflexible polymers with extensible bonds in the Gibbs and Helmholtz ensembles. J. Chem. Phys. 138, 157102 (2013)
Manca, F., Giordano, S., Palla, P.L., Cleri, F., Colombo, L.: Theory and Monte Carlo simulations for the stretching of flexible and semiflexible single polymer chains under external fields. J. Chem. Phys. 137, 244907 (2012)
Rosa, A., Hoang, T.X., Marenduzzo, D., Maritan, A.: A new interpolation formula for semiflexible polymers. Biophys. Chem. 115, 251 (2005)
Su, T., Purohit, P.K.: Thermomechanics of a heterogeneous fluctuating chain. J. Mech. Phys. Solids 58, 164 (2010)
Kierfeld, J., Niamploy, O., Sa-Yakanit, V., Lipowsky, R.: Stretching of semiflexible polymers with elastic bonds. Eur. Phys. J. E 14, 17 (2004)
Winkler, R.G.: Equivalence of statistical ensembles in stretching single flexible polymers. Soft Matter 6, 6183 (2010)
Manca, F., Giordano, S., Palla, P.L., Cleri, F.: On the equivalence of thermodynamics ensembles for flexible polymer chains. Phys. A Stat. Mech. Appl. 395, 154 (2014)
Rief, M., Fernandez, J.M., Gaub, H.E.: Elastically coupled two-level systems as a model for biopolymer extensibility. Phys. Rev. Lett. 81, 4764 (1998)
Manca, F., Giordano, S., Palla, P.L., Cleri, F., Colombo, L.: Two-state theory of single-molecule stretching experiments. Phys. Rev. E 87, 032705 (2013)
Kellermayer, M.S., Smith, S.B., Granzier, H.L., Bustamante, C.: Folding-unfolding transitions in single titin molecules characterized with laser tweezers. Science 276, 1112 (1997)
Rief, M., Pascual, J., Saraste, M., Gaub, H.E.: Single molecule force spectroscopy of spectrin repeats: low unfolding forces in helix bundles. J. Mol. Biol. 286, 553 (1999)
Prados, A., Carpio, A., Bonilla, L.L.: Sawtooth patterns in force-extension curves of biomolecules: an equilibrium-statistical-mechanics theory. Phys. Rev. E 88, 012704 (2013)
Bonilla, L.L., Carpio, A., Prados, A.: Theory of force-extension curves for modular proteins and DNA hairpins. Phys. Rev. E 91, 052712 (2015)
Giordano, S.: Spin variable approach for the statistical mechanics of folding and unfolding chains. Soft Matter 13, 6877 (2017)
Caruel, M., Allain, J.-M., Truskinovsky, L.: Mechanics of collective unfolding. J. Mech. Phys. Sol. 76, 237 (2015)
Benichou, I., Zhang, Y., Dudko, O.K., Givli, S.: The rate dependent response of a bistable chain at finite temperature. J. Mech. Phys. Sol. 95, 44 (2016)
Parzen, E.: Modern Probability Theory and Its Applications. Wiley-Interscience, New York (1992)
Oppenheim, A.V., Schafer, R.W.: Discrete-Time Signal Processing. Prentice Hall, Upper Saddle River (1999)
Berlin, T.H., Kac, M.: The spherical model of a ferromagnet. Phys. Rev. 86, 821 (1952)
Morita, T., Horiguchi, T.: Calculation of the lattice Green’s function for the bcc, fcc, and rectangular lattices. J. Math. Phys. 12, 986 (1971)
Delves, R.T., Joyce, G.S.: On the Green function for the anisotropic simple cubic lattice. Ann. Phys. 291, 71 (2001)
Bernasconi, J.: Conduction in anisotropic disordered systems: effective-medium theory. Phys. Rev. B 9, 4575 (1974)
Cserti, J.: Application of the lattice Greens function for calculating the resistance of an infinite network of resistors. Am. J. Phys. 68, 896 (2000)
Giordano, S.: Disordered lattice networks: general theory and simulations. Int. J. Circuit Theor. Appl. 33, 519 (2005)
Giordano, S.: Two-dimensional disordered lattice networks with substrate. Physica A 375, 726 (2007)
Wang, Q.: On the anisotropy of lattice polymers. J. Chem. Phys. 131, 234903 (2009)
Glatting, G., Winkler, R.G., Reineker, P.: Are the continuum and the lattice representation of freely jointed chains equivalent? Macromol. Theory Simul. 3, 575 (1994)
Taylor, M.P., Lipson, J.E.G.: Lattice versus continuum models of a polymer chain. J. Chem. Phys. 111, 8701 (1999)
Fedoryuk, M.V.: Asymptotic: Integrals and Series. Nauka, Moscow (1987)
Wong, R.: Asymptotic Approximations of Integrals. Academic Press, New York (1989)
Pemantle, R., Wilson, M.C.: Asymptotic expansions of oscillatory integrals with complex phase. Contemp. Math. 520, 221 (2010)
Neuschel, T.: Apéry polynomials and the multivariate Saddle point method. Constr. Approx. 40, 487 (2014)
Smith, S.M., Cui, Y., Bustamante, C.: Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271, 795 (1996)
Bustamante, C., Bryant, Z., Smith, S.B.: Ten years of tension: single-molecule DNA mechanics. Nature 421, 423 (2003)
Rouzina, I., Bloomfield, V.A.: Force-induced melting of the DNA double helix 1. Thermodynamic analysis. Biophys. J. 80, 882 (2001)
Rouzina, I., Bloomfield, V.A.: Force-induced melting of the DNA double helix 2. Effect of solution conditions. Biophys. J. 80, 894 (2001)
Pupo, A.E.B., Falo, F., Fiasconaro, A.: DNA overstretching transition induced by melting in a dynamical mesoscopic model. J. Chem. Phys. 139, 095101 (2013)
Cocco, S., Yan, J., Léger, J.-F., Chatenay, D., Marko, J.F.: Overstretching and force-driven strand separation of double-helix DNA. Phys. Rev. E 70, 011910 (2004)
Rief, M., Oesterhelt, F., Heymann, B., Gaub, H.E.: Single molecule force spectroscopy on polysaccharides by atomic force microscopy. Science 275, 28 (1997)
Hanke, F., Kreuzer, H.J.: Conformational transitions in single polymer molecules modeled with a complete energy landscape: continuous two-state model. Eur. Phys. J. E 22, 163 (2007)
Bell, G.I.: Models for the specific adhesion of cells to cells. Science 200, 618 (1978)
Fisher, T.E., Oberhauser, A.F., Carrion-Vazquez, M., Marszalek, P.E., Fernandez, J.M.: The study of protein mechanics with the atomic force microscope. Trends Biochem. Sci. 24, 379 (1999)
Imparato, A., Sbrana, F., Vassalli, M.: Reconstructing the free-energy landscape of a polyprotein by single-molecule experiments. Europhys. Lett. 82, 58006 (2008)
De Tommasi, D., Millardi, N., Puglisi, G., Saccoamandi, G.: An energetic model for macromolecules unfolding in stretching experiments. J. R. Soc. Interface 10, 20130651 (2013)
Makarov, D.E.: A theoretical model for the mechanical unfolding of repeat proteins. Biophys. J. 96, 2160 (2009)
Puglisi, G., Truskinovsky, L.: Mechanics of a discrete chain with bi-stable elements. J. Mech. Phys. Sol. 48, 1 (2000)
Caruel, M., Allain, J.-M., Truskinovsky, L.: Muscle as a metamaterial operating near a critical point. Phys. Rev. Lett. 110, 248103 (2013)
Caruel, M., Truskinovsky, L.: Statistical mechanics of the Huxley–Simmons model. Phys. Rev. E 93, 062407 (2016)
Efendiev, Y.R., Truskinovsky, L.: Thermalization of a driven bi-stable FPU chain. Contin. Mech. Thermodyn. 22, 679 (2010)
Benichou, I., Givli, S.: Structures undergoing discrete phase transformation. J. Mech. Phys. Sol. 61, 94 (2013)
Benichou, I., Givli, S.: Rate dependent response of nanoscale structures having a multiwell energy landscape. Phys. Rev. Lett. 114, 095504 (2015)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Andreas Öchsner.
Rights and permissions
About this article
Cite this article
Giordano, S. Helmholtz and Gibbs ensembles, thermodynamic limit and bistability in polymer lattice models. Continuum Mech. Thermodyn. 30, 459–483 (2018). https://doi.org/10.1007/s00161-017-0615-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00161-017-0615-5