Helmholtz and Gibbs ensembles, thermodynamic limit and bistability in polymer lattice models | Continuum Mechanics and Thermodynamics Skip to main content
Log in

Helmholtz and Gibbs ensembles, thermodynamic limit and bistability in polymer lattice models

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Representing polymers by random walks on a lattice is a fruitful approach largely exploited to study configurational statistics of polymer chains and to develop efficient Monte Carlo algorithms. Nevertheless, the stretching and the folding/unfolding of polymer chains within the Gibbs (isotensional) and the Helmholtz (isometric) ensembles of the statistical mechanics have not been yet thoroughly analysed by means of the lattice methodology. This topic, motivated by the recent introduction of several single-molecule force spectroscopy techniques, is investigated in the present paper. In particular, we analyse the force–extension curves under the Gibbs and Helmholtz conditions and we give a proof of the ensembles equivalence in the thermodynamic limit for polymers represented by a standard random walk on a lattice. Then, we generalize these concepts for lattice polymers that can undergo conformational transitions or, equivalently, for chains composed of bistable or two-state elements (that can be either folded or unfolded). In this case, the isotensional condition leads to a plateau-like force–extension response, whereas the isometric condition causes a sawtooth-like force–extension curve, as predicted by numerous experiments. The equivalence of the ensembles is finally proved also for lattice polymer systems exhibiting conformational transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Weiner, J.H.: Statistical Mechanics of Elasticity. Dover Publication Inc., New York (2002)

    MATH  Google Scholar 

  2. Doi, M.: Introduction to Polymer Physics. Clarendon, Oxford (1996)

    Google Scholar 

  3. Vanderzande, C.: Lattice Models of Polymers. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  4. Janse van Rensburg, E.J.: Statistical Mechanics of Interacting Walks, Polygons, Animals and Vesicles. Oxford University Press Inc., New York (2000)

    MATH  Google Scholar 

  5. Flory, P.J.: Statistical Mechanics of Polymer Chains. Wiley, New York (1989)

    Google Scholar 

  6. Rubinstein, M., Colby, R.H.: Polymer Physics. Oxford University Press, New York (2003)

    Google Scholar 

  7. Binder, K. (ed.): The Monte Carlo Method in Condensed Matter Physics, Topics in Applied Physics, vol. 71. Springer, Berlin (1992)

    Google Scholar 

  8. Binder, K., Heermann, D.: Monte Carlo Simulation in Statistical Physics: An Introduction. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  9. Halpin-Healy, T., Zhang, Y.C.: Kinetic roughening phenomena, stochastic growth, directed polymers and all that. Aspects of multidisciplinary statistical mechanics. Phys. Rep. 254, 215 (1995)

    Article  ADS  Google Scholar 

  10. de Gennes, P.G.: Scaling Concepts in Polymer Physics. Cornell University Press, Ithaca (1979)

    Google Scholar 

  11. de Gennes, P.G.: Exponents for the excluded volume problem as derived by the Wilson method. Phys. Lett. A 38, 339 (1972)

    Article  ADS  Google Scholar 

  12. Strick, T.R., Dessinges, M.-N., Charvin, G., Dekker, N.H., Allemand, J.-F., Bensimon, D., Croquette, V.: Stretching of macromolecules and proteins. Rep. Progr. Phys. 66, 1 (2002)

    Article  ADS  Google Scholar 

  13. Neuman, K.C., Nagy, A.: Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nature Methods 5, 491 (2008)

    Article  Google Scholar 

  14. Kumar, S., Li, M.S.: Biomolecules under mechanical force. Phys. Rep. 486, 1 (2010)

    Article  ADS  Google Scholar 

  15. Bustamante, C., Liphardt, J., Ritort, F.: The nonequilibrium thermodynamics of small systems. Phys. Today 58, 43 (2005)

    Article  Google Scholar 

  16. Dieterich, E., Camunas-Soler, J., Ribezzi-Crivellari, M., Seifert, U., Ritort, F.: Control of force through feedback in small driven systems. Phys. Rev. E 94, 012107 (2016)

    Article  ADS  Google Scholar 

  17. Winkler, R.G.: Deformation of semiflexible chains. J. Chem. Phys. 118, 2919 (2003)

    Article  ADS  Google Scholar 

  18. Marko, J.F., Siggia, E.D.: Stretching DNA. Macromolecules 28, 8759 (1995)

    Article  ADS  Google Scholar 

  19. Glatting, G., Winkler, R.G., Reineker, P.: Partition function and force extension relation for a generalized freely jointed chain. Macromolecules 26, 6085 (1993)

    Article  ADS  Google Scholar 

  20. Manca, F., Giordano, S., Palla, P.L., Zucca, R., Cleri, F., Colombo, L.: Elasticity of flexible and semiflexible polymers with extensible bonds in the Gibbs and Helmholtz ensembles. J. Chem. Phys. 136, 154906 (2012)

    Article  ADS  Google Scholar 

  21. Manca, F., Giordano, S., Palla, P.L., Cleri, F., Colombo, L.: Response to comment on elasticity of flexible and semiflexible polymers with extensible bonds in the Gibbs and Helmholtz ensembles. J. Chem. Phys. 138, 157102 (2013)

    Article  ADS  Google Scholar 

  22. Manca, F., Giordano, S., Palla, P.L., Cleri, F., Colombo, L.: Theory and Monte Carlo simulations for the stretching of flexible and semiflexible single polymer chains under external fields. J. Chem. Phys. 137, 244907 (2012)

    Article  ADS  Google Scholar 

  23. Rosa, A., Hoang, T.X., Marenduzzo, D., Maritan, A.: A new interpolation formula for semiflexible polymers. Biophys. Chem. 115, 251 (2005)

    Article  Google Scholar 

  24. Su, T., Purohit, P.K.: Thermomechanics of a heterogeneous fluctuating chain. J. Mech. Phys. Solids 58, 164 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Kierfeld, J., Niamploy, O., Sa-Yakanit, V., Lipowsky, R.: Stretching of semiflexible polymers with elastic bonds. Eur. Phys. J. E 14, 17 (2004)

    Article  Google Scholar 

  26. Winkler, R.G.: Equivalence of statistical ensembles in stretching single flexible polymers. Soft Matter 6, 6183 (2010)

    Article  ADS  Google Scholar 

  27. Manca, F., Giordano, S., Palla, P.L., Cleri, F.: On the equivalence of thermodynamics ensembles for flexible polymer chains. Phys. A Stat. Mech. Appl. 395, 154 (2014)

    Article  MathSciNet  Google Scholar 

  28. Rief, M., Fernandez, J.M., Gaub, H.E.: Elastically coupled two-level systems as a model for biopolymer extensibility. Phys. Rev. Lett. 81, 4764 (1998)

    Article  ADS  Google Scholar 

  29. Manca, F., Giordano, S., Palla, P.L., Cleri, F., Colombo, L.: Two-state theory of single-molecule stretching experiments. Phys. Rev. E 87, 032705 (2013)

    Article  ADS  Google Scholar 

  30. Kellermayer, M.S., Smith, S.B., Granzier, H.L., Bustamante, C.: Folding-unfolding transitions in single titin molecules characterized with laser tweezers. Science 276, 1112 (1997)

    Article  Google Scholar 

  31. Rief, M., Pascual, J., Saraste, M., Gaub, H.E.: Single molecule force spectroscopy of spectrin repeats: low unfolding forces in helix bundles. J. Mol. Biol. 286, 553 (1999)

    Article  Google Scholar 

  32. Prados, A., Carpio, A., Bonilla, L.L.: Sawtooth patterns in force-extension curves of biomolecules: an equilibrium-statistical-mechanics theory. Phys. Rev. E 88, 012704 (2013)

    Article  ADS  Google Scholar 

  33. Bonilla, L.L., Carpio, A., Prados, A.: Theory of force-extension curves for modular proteins and DNA hairpins. Phys. Rev. E 91, 052712 (2015)

    Article  ADS  Google Scholar 

  34. Giordano, S.: Spin variable approach for the statistical mechanics of folding and unfolding chains. Soft Matter 13, 6877 (2017)

    Article  ADS  Google Scholar 

  35. Caruel, M., Allain, J.-M., Truskinovsky, L.: Mechanics of collective unfolding. J. Mech. Phys. Sol. 76, 237 (2015)

    Article  ADS  Google Scholar 

  36. Benichou, I., Zhang, Y., Dudko, O.K., Givli, S.: The rate dependent response of a bistable chain at finite temperature. J. Mech. Phys. Sol. 95, 44 (2016)

    Article  ADS  Google Scholar 

  37. Parzen, E.: Modern Probability Theory and Its Applications. Wiley-Interscience, New York (1992)

    MATH  Google Scholar 

  38. Oppenheim, A.V., Schafer, R.W.: Discrete-Time Signal Processing. Prentice Hall, Upper Saddle River (1999)

    MATH  Google Scholar 

  39. Berlin, T.H., Kac, M.: The spherical model of a ferromagnet. Phys. Rev. 86, 821 (1952)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Morita, T., Horiguchi, T.: Calculation of the lattice Green’s function for the bcc, fcc, and rectangular lattices. J. Math. Phys. 12, 986 (1971)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Delves, R.T., Joyce, G.S.: On the Green function for the anisotropic simple cubic lattice. Ann. Phys. 291, 71 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Bernasconi, J.: Conduction in anisotropic disordered systems: effective-medium theory. Phys. Rev. B 9, 4575 (1974)

    Article  ADS  Google Scholar 

  43. Cserti, J.: Application of the lattice Greens function for calculating the resistance of an infinite network of resistors. Am. J. Phys. 68, 896 (2000)

    Article  ADS  Google Scholar 

  44. Giordano, S.: Disordered lattice networks: general theory and simulations. Int. J. Circuit Theor. Appl. 33, 519 (2005)

    Article  MATH  Google Scholar 

  45. Giordano, S.: Two-dimensional disordered lattice networks with substrate. Physica A 375, 726 (2007)

    Article  ADS  Google Scholar 

  46. Wang, Q.: On the anisotropy of lattice polymers. J. Chem. Phys. 131, 234903 (2009)

    Article  ADS  Google Scholar 

  47. Glatting, G., Winkler, R.G., Reineker, P.: Are the continuum and the lattice representation of freely jointed chains equivalent? Macromol. Theory Simul. 3, 575 (1994)

    Article  Google Scholar 

  48. Taylor, M.P., Lipson, J.E.G.: Lattice versus continuum models of a polymer chain. J. Chem. Phys. 111, 8701 (1999)

    Article  ADS  Google Scholar 

  49. Fedoryuk, M.V.: Asymptotic: Integrals and Series. Nauka, Moscow (1987)

    MATH  Google Scholar 

  50. Wong, R.: Asymptotic Approximations of Integrals. Academic Press, New York (1989)

    MATH  Google Scholar 

  51. Pemantle, R., Wilson, M.C.: Asymptotic expansions of oscillatory integrals with complex phase. Contemp. Math. 520, 221 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  52. Neuschel, T.: Apéry polynomials and the multivariate Saddle point method. Constr. Approx. 40, 487 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  53. Smith, S.M., Cui, Y., Bustamante, C.: Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271, 795 (1996)

    Article  ADS  Google Scholar 

  54. Bustamante, C., Bryant, Z., Smith, S.B.: Ten years of tension: single-molecule DNA mechanics. Nature 421, 423 (2003)

    Article  ADS  Google Scholar 

  55. Rouzina, I., Bloomfield, V.A.: Force-induced melting of the DNA double helix 1. Thermodynamic analysis. Biophys. J. 80, 882 (2001)

    Article  Google Scholar 

  56. Rouzina, I., Bloomfield, V.A.: Force-induced melting of the DNA double helix 2. Effect of solution conditions. Biophys. J. 80, 894 (2001)

    Article  Google Scholar 

  57. Pupo, A.E.B., Falo, F., Fiasconaro, A.: DNA overstretching transition induced by melting in a dynamical mesoscopic model. J. Chem. Phys. 139, 095101 (2013)

    Article  ADS  Google Scholar 

  58. Cocco, S., Yan, J., Léger, J.-F., Chatenay, D., Marko, J.F.: Overstretching and force-driven strand separation of double-helix DNA. Phys. Rev. E 70, 011910 (2004)

    Article  ADS  Google Scholar 

  59. Rief, M., Oesterhelt, F., Heymann, B., Gaub, H.E.: Single molecule force spectroscopy on polysaccharides by atomic force microscopy. Science 275, 28 (1997)

    Article  Google Scholar 

  60. Hanke, F., Kreuzer, H.J.: Conformational transitions in single polymer molecules modeled with a complete energy landscape: continuous two-state model. Eur. Phys. J. E 22, 163 (2007)

    Article  Google Scholar 

  61. Bell, G.I.: Models for the specific adhesion of cells to cells. Science 200, 618 (1978)

    Article  ADS  Google Scholar 

  62. Fisher, T.E., Oberhauser, A.F., Carrion-Vazquez, M., Marszalek, P.E., Fernandez, J.M.: The study of protein mechanics with the atomic force microscope. Trends Biochem. Sci. 24, 379 (1999)

    Article  Google Scholar 

  63. Imparato, A., Sbrana, F., Vassalli, M.: Reconstructing the free-energy landscape of a polyprotein by single-molecule experiments. Europhys. Lett. 82, 58006 (2008)

    Article  ADS  Google Scholar 

  64. De Tommasi, D., Millardi, N., Puglisi, G., Saccoamandi, G.: An energetic model for macromolecules unfolding in stretching experiments. J. R. Soc. Interface 10, 20130651 (2013)

    Article  Google Scholar 

  65. Makarov, D.E.: A theoretical model for the mechanical unfolding of repeat proteins. Biophys. J. 96, 2160 (2009)

    Article  ADS  Google Scholar 

  66. Puglisi, G., Truskinovsky, L.: Mechanics of a discrete chain with bi-stable elements. J. Mech. Phys. Sol. 48, 1 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. Caruel, M., Allain, J.-M., Truskinovsky, L.: Muscle as a metamaterial operating near a critical point. Phys. Rev. Lett. 110, 248103 (2013)

    Article  ADS  Google Scholar 

  68. Caruel, M., Truskinovsky, L.: Statistical mechanics of the Huxley–Simmons model. Phys. Rev. E 93, 062407 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  69. Efendiev, Y.R., Truskinovsky, L.: Thermalization of a driven bi-stable FPU chain. Contin. Mech. Thermodyn. 22, 679 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. Benichou, I., Givli, S.: Structures undergoing discrete phase transformation. J. Mech. Phys. Sol. 61, 94 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  71. Benichou, I., Givli, S.: Rate dependent response of nanoscale structures having a multiwell energy landscape. Phys. Rev. Lett. 114, 095504 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Giordano.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giordano, S. Helmholtz and Gibbs ensembles, thermodynamic limit and bistability in polymer lattice models. Continuum Mech. Thermodyn. 30, 459–483 (2018). https://doi.org/10.1007/s00161-017-0615-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-017-0615-5

Keywords

Navigation