Mechanics of reversible unzipping | Continuum Mechanics and Thermodynamics Skip to main content
Log in

Mechanics of reversible unzipping

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We study the mechanics of a reversible decohesion (unzipping) of an elastic layer subjected to quasi-static end-point loading. At the micro level the system is simulated by an elastic chain of particles interacting with a rigid foundation through breakable springs. Such system can be viewed as prototypical for the description of a wide range of phenomena from peeling of polymeric tapes, to rolling of cells, working of Gecko’s fibrillar structures and denaturation of DNA. We construct a rigorous continuum limit of the discrete model which captures both stable and metastable configurations and present a detailed parametric study of the interplay between elastic and cohesive interactions. We show that the model reproduces the experimentally observed abrupt transition from an incremental evolution of the adhesion front to a sudden complete decohesion of a macroscopic segment of the adhesion layer. As the microscopic parameters vary the macroscopic response changes from quasi-ductile to quasi-brittle, with corresponding decrease in the size of the adhesion hysteresis. At the micro-scale this corresponds to a transition from a ‘localized’ to a ‘diffuse’ structure of the decohesion front (domain wall). We obtain an explicit expression for the critical debonding threshold in the limit when the internal length scales are much smaller than the size of the system. The achieved parametric control of the microscopic mechanism can be used in the design of new biological inspired adhesion devices and machines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Braides, A.: Gamma-Convergence for Beginners. Oxford University Press, Oxford (2002)

  2. Braun O.M., Kivshar S.: The Frenkel–Kontorova model. Springer, Berlin (2003)

    Google Scholar 

  3. Bucur, D., Buttazzo, G.: Variational methods in shape optimization problems. In: Progress in Nonlinear Differential Equations and Their Applications. Birkhäuser, Boston (2005)

  4. Chen S., Gao H.: Bio-inspired mechanics of reversible adhesion:orientation dependent adhesion strength for non-slipping adhesive contact with transversely isotropic elastic materials. J. Mech. Phys. Solids 55, 1001–1015 (2007)

    Article  MATH  Google Scholar 

  5. Dal Maso G.: An Introduction to Γ-Convergence. Birkhäuser, Boston (1993)

    Google Scholar 

  6. Del Piero G., Truskinovsky L.: Elastic bars with cohesive energy. Cont. Mech. Thermodyn. 21(2), 141–171 (2009)

    Article  MATH  Google Scholar 

  7. Dembo M., Torney D.C., Saxman K., Hammer D.: The reaction-limited kinetics of membrane-to-surface adhesion and detachment. Proc. R. Soc. Lond. B 234, 55–83 (1988)

    Article  Google Scholar 

  8. Deshpande V.S., Mrksich M., McMeeking R.M., Evans A.G.: A bio-mechanical model for coupling cell contractility with focal adhesion formation. J. Mech. Phys. Sol. 56, 1484–1510 (2008)

    Article  MATH  Google Scholar 

  9. Frémond M.: Contact with Adhesion, Chap. 4. Birkhäuser, Verlag (1988)

    Google Scholar 

  10. Geim A.K., Dubonos S.V., Grigorieva I.V., Novoselov K.S., Zhukov A.A., Shapoval S.Y.: Microfabricated adhesive mimicking gecko foot-hair. Nat. Mater. 2, 461–463 (2003)

    Article  Google Scholar 

  11. Hu G.Y., Connell R.F.: Analytic inversion of symmetric tridiagonal matrices. J. Phys. A 29, 1511–1513 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  12. Jagota A., Bennison S.J.: Mechanics of adhesion through a fibrillar microstructure. Integr. Comp. Biol. 42, 1140–1145 (2002)

    Article  Google Scholar 

  13. Kendall K.: Molecular Adhesion and its Applications. Kluwer, Dordrecht (2004)

    Google Scholar 

  14. Kresse O., Truskinovsky L.: Lattice friction for crystalline defects: from dislocations to cracks. J. Mech. Phys. Solids 52, 2521–2543 (2003)

    Article  MathSciNet  Google Scholar 

  15. Lipowsky R.: Critical effects at complete wetting. Phys. Rev. B 32, 1731 (1985)

    Article  Google Scholar 

  16. Maddalena F., Percivale D.: Variational models for peeling problems. Interf. Free Bound. 10, 503–516 (2008)

    MATH  MathSciNet  Google Scholar 

  17. Marigo J.J., Truskinovsky L.: Initiation and propagation of fracture in the models of Griffith and Barenblatt. Continuum Mech. Thermdyn. 16, 391–409 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Mefti N., Haussy B., Ganghoffer J.F.: Mechanical modeling of the rolling phenomenon at the cell scale. Int. J. Solids Struct. 43, 7378–7392 (2006)

    Article  MATH  Google Scholar 

  19. Nabben R.: Two-sided bounds on the inverses of diagonally dominant tridiagonal matrices. Linear Algebra Appl. 287, 289–305 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Oyharcabal X., Frisch T.: Peeling off an elastica from a smooth attractive substrate. Phys. Rev. E 71, 0366111–0366116 (2005)

    Article  Google Scholar 

  21. Persson B.N.J.: On the mechanism of adhesion in biological systems. J. Chem. Phys 118, 7614–7621 (2003)

    Article  Google Scholar 

  22. Peyrard M.: Nonlinear dynamics and statistical physics of DNA. Nonlinearity 17, R1–R40 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  23. Podio-Guidugli P.: Peeling tapes. In: Steinmann, P., Maugin, G. (eds) Mechanics of Material Forces, vol. 13., Springer, Heidelberg (2005)

    Google Scholar 

  24. Puglisi G., Truskinovsky L.: Rate independent hysteresis in a bi-stable chain. J. Mech. Phys. Solids 50(2), 165–187 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  25. Puglisi G., Truskinovsky L.: Thermodynamics of rate independent plasticity. J. Mech. Phys. Solids 53(3), 655–679 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  26. Scherge M., Gorb S.: Biological micro and nano tribilogy-Nature’s solutions. Springer, Berlin (2001)

    Google Scholar 

  27. Sha Y., Huy C.Y., Ruina A., Kramer E.J.: Detailed simulation of craze fibril failure at a crack tip in a glassy polymer. Acta Mat. 45(9), 3555–3563 (1997)

    Article  Google Scholar 

  28. Theodorakopoulos N., Peyrard M., MacKay R.S.: Nonlinear structures and thermodynamic instabilities in a one-dimensional lattice system. Phys. Rev. Lett. 93, 258101 (2004)

    Article  Google Scholar 

  29. Thomson, R.: Physics of fracture, vol. 39 of Solid State Physics. In: Turnbull, D., Ehrenreich, H. (eds.) pp. 1–129. Academic Press, New York (1987)

  30. Yao H., Gao H.: Mechanics of robust and releasable adhesion in biology: bottom-up designed hierarchical structures of gecko. J. Mech. Phys. Solids 54, 1120–1146 (2006)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Truskinovsky.

Additional information

Communicated by P. Suquet

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maddalena, F., Percivale, D., Puglisi, G. et al. Mechanics of reversible unzipping. Continuum Mech. Thermodyn. 21, 251–268 (2009). https://doi.org/10.1007/s00161-009-0108-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-009-0108-2

Keywords

PACS

Navigation