Survey of multi-objective optimization methods for engineering | Structural and Multidisciplinary Optimization Skip to main content
Log in

Survey of multi-objective optimization methods for engineering

  • Review article
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

A survey of current continuous nonlinear multi-objective optimization (MOO) concepts and methods is presented. It consolidates and relates seemingly different terminology and methods. The methods are divided into three major categories: methods with a priori articulation of preferences, methods with a posteriori articulation of preferences, and methods with no articulation of preferences. Genetic algorithms are surveyed as well. Commentary is provided on three fronts, concerning the advantages and pitfalls of individual methods, the different classes of methods, and the field of MOO as a whole. The Characteristics of the most significant methods are summarized. Conclusions are drawn that reflect often-neglected ideas and applicability to engineering problems. It is found that no single approach is superior. Rather, the selection of a specific method depends on the type of information that is provided in the problem, the user’s preferences, the solution requirements, and the availability of software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arora, J.S.; Elwakeil, O.A.; Chahande, A.I.; Hsieh, C.C. 1995: Global optimization methods for engineering applications: a review. Struct. Optim. 9, 137–159

    Google Scholar 

  2. Athan, T.W.; Papalambros, P.Y. 1996: A note on weighted criteria methods for compromise solutions in multi-objective optimization. Eng. Optim. 27, 155–176

    Google Scholar 

  3. Baier, H. 1977: Über Algorithmen zur Ermittlung und Charakterisierung Pareto-optimaler Lösungen bei Entwurfsaufgaben Elastischer Tragwerke. Z. Angew. Math. Mech. 57, 318–320

    Google Scholar 

  4. Belegundu, A.D.; Murthy, D.V.; Salagame, R.R.; Contans, E.W. 1994: Multi-objective optimization of laminated ceramic composites using genetic algorithms. In: 5th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization (held in Panama City Beach), pp. 1055–1022. Washington, DC: American Institute of Aeronautics and Astronautics

  5. Bendsoe, M.P.; Olhoff, N.; Taylor, J.E. 1984: A variational formulation for multicriteria structural optimization. J. Struct. Mech. 11, 523–544

    Google Scholar 

  6. Benson, H.P. 1978: Existence of efficient solutions for vector maximization problems. J. Optim. Theory Appl. 26, 569–580

    Google Scholar 

  7. Ben-Tal, A.; Teboulle, M. 1989: A smooth technique for nondifferentiable optimization problems. In: Dolecki, S. (ed.) Optimization, Proceedings of the Fifth French-German Conference (held in Castel-Novel 1988), Lecture Notes in Mathematics, No. 1405, pp. 1–11. Berlin: Springer-Verlag

  8. Boychuk, L.M.; Ovchinnikov, V.O. 1973: Principal methods for solution of multicriteria optimization problems (survey). Sov. Autom. Control 6, 1–4

    Google Scholar 

  9. Bridgman, P.W. 1922: Dimensional Analysis. New Haven: Yale University Press

  10. Brosowski, B.; da Silva, A.R. 1994: Simple tests for multi-criteria optimality. OR Spektrum 16, 243–247

    Google Scholar 

  11. Carmichael, D.G. 1980: Computation of Pareto optima in structural design. Int. J. Numer. Methods Eng. 15, 925–952

    Google Scholar 

  12. Cavicchio, D.J. 1970: Adaptive Search Using Simulated Evolution. Ph.D. Dissertation, University of Michigan, Ann Arbor, MI

  13. Chankong, V.; Haimes, Y.Y. 1983: Multiobjective Decision Making Theory and Methodology. New York: Elsevier Science Publishing

  14. Charnes, A.; Clower, R.W.; Kortanek, K.O. 1967: Effective control through coherent decentralization with preemptive goals. Econometrica 35, 294–320

    Google Scholar 

  15. Charnes, A.; Cooper, W.W. 1961: Management Models and Industrial Applications of Linear Programming. New York: John Wiley and Sons

  16. Charnes, A.; Cooper, W.W. 1977: Goal programming and multiple objective optimization; part 1. Eur. J. Oper. Res. 1, 39–54

    Google Scholar 

  17. Charnes, A.; Cooper, W.W.; Ferguson, R.O. 1955: Optimal estimation of executive compensation by linear programming. Manage. Sci. 1, 138–151

    Google Scholar 

  18. Chen, W.; Sahai, A.; Messac, A.; Sundararaj, G. 2000: Exploration of the effectiveness of physical programming in robust design. J. Mech. Des. 122, 155–163

    Google Scholar 

  19. Chen, W.; Wiecek, M.M.; Zhang, J. 1999: Quality utility – a compromise programming approach to robust design. J. Mech. Des. 121, 179–187

    Google Scholar 

  20. Cheng, F.Y.; Li, D. 1996: Multiobjective optimization of structures with and without control. J. Guid. Control Dyn. 19, 392–397

    Google Scholar 

  21. Cheng, F.Y.; Li, D. 1997: Multiobjective optimization design with Pareto genetic algorithm. J. Struct. Eng. September, 1252–1261

  22. Cheng, F.Y.; Li, D. 1998: Genetic algorithm development for multiobjective optimization of structures. AIAA J. 36, 1105–1112

    Google Scholar 

  23. Cheng, F.Y.; Li, X.S. 1998b: A generalized center method for multiobjective optimization. In: Frangopol, D.M. (ed.) Optimal Performance of Civil Infrastructure Systems. Reston: American Society of Civil Engineers

  24. Chiampi, M.; Fuerntratt, G.; Magele, C.; Ragusa, C.; Repetto, M. 1998: Multi-objective optimization with stochastic algorithms and fuzzy definition of objective function. Int. J. Appl. Electromagn. Mech. 9, 381–389

    Google Scholar 

  25. Choo, E.-U.; Atkins, D.R. 1983: Proper efficiency in nonconvex multicriteria programming. Math. Oper. Res. 8, 467–470

    Google Scholar 

  26. Cohon, J.L. 1978: Multiobjective Programming and Planning. New York: Academic Press

  27. Corley, H.W. 1980: A new scalar equivalence for Pareto optimization. IEEE Trans. Autom. Control 25, 829–830

    Google Scholar 

  28. Coverstone-Carroll, V.; Hartmann, J.W.; Mason, W.J. 2000: Optimal multi-objective low-thrust spacecraft trajectories. Comput. Methods Appl. Mech. Eng. 186, 387–402

    Google Scholar 

  29. Das, I. 1999: An improved technique for choosing parameters for Pareto surface generation using normal-boundary intersection. In: ISSMO/UBCAD/AIASA, Third World Congress of Structural and Multidisciplinary Optimization (held in Buffalo). Buffalo: University of Buffalo, Center for Advanced Design

  30. Das, I.; Dennis, J.E. 1997: A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems. Struct. Optim. 14, 63–69

    Google Scholar 

  31. Das, I.; Dennis, J.E. 1998: Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM J. Optim. 8, 631–657

    Google Scholar 

  32. Dauer, J.P.; Krueger, R.J. 1980: A multiobjective optimization model for water resources planning. Appl. Math. Model. 4, 171–175

    Google Scholar 

  33. Dauer, J.P.; Stadler, W. 1986: A survey of vector optimization in infinite dimensional spaces, part II. J. Optim. Theory Appl. 51, 205–242

    Google Scholar 

  34. Davis, L. (ed.) 1991: Handbook of Genetic Algorithms. New York: Van Nostrand Reinhold

  35. Davis, M.D. 1983: Game Theory, A Nontechnical Introduction. New York: Dover Publications

  36. Deb, K. 1989: Genetic Algorithms in Multimodal Function Optimization. MS Thesis, TCGA Report No. 89002, University of Alabama, Tuscaloosa, AL

  37. Eckenrode, R.T. 1965: Weighting multiple criteria. Manage. Sci. 12, 180–192

    Google Scholar 

  38. Elwakeil, O.A.; Arora, J.S. 1996: Two algorithms for global optimization of general NLP problems. Int. J. Numer. Methods Eng. 39, 3305–3325

    Google Scholar 

  39. Eschenauer, H.; Koski, J.; Osyczka, A. (eds.) 1990: Multicriteria Design Optimization Procedures and Applications. Berlin: Springer-Verlag

  40. Fonseca, C.M.; Fleming, P.J. 1993: Genetic algorithms for multiobjective optimization: formulation, discussion, and generalization. In: The Fifth International Conference on Genetic Algorithms (held in Urbana-Champaign), pp. 416–423. San Mateo: Morgan Kaufmann

  41. Gembicki, F.W. 1974: Performance and Sensitivity Optimization: A Vector Index Approach. Ph.D. Dissertation, Case Western Research University, Cleveland, OH

  42. Gen, M.; Cheng, R. 1997: Genetic Algorithms and Engineering Design. New York: John Wiley and Sons

  43. Gen, M.; Liu, B. 1995: A Genetic Algorithm for Nonlinear Goal Programming. Technical Report ISE95-5, Ashikaga Institute of Technology, Ashikaga, Japan

  44. Geoffrion, A.M. 1968: Proper efficiency and the theory of vector maximization. J. Math. Anal. Appl. 22, 618–630

    Google Scholar 

  45. Gerasimov, E.N.; Repko, V.N. 1978: Multicriterial optimization. Sov. Appl. Mech. 14, 1179–1184; translated from Prikladnaya Mekhanika 14, 72–78 (1978)

  46. Goicoechea, A.; Duckstein, L.; Fogel, M.M. 1976: Multiobjective programming in watershed management: A case study of the Charleston watershed. Water Resour. Res. 12, 1085–1092

    Google Scholar 

  47. Goicoechea, A.; Hansen, D.R.; Duckstein, L. 1982: Multiobjective Decision Analysis with Engineering and Business Applications. New York: John Wiley and Sons

  48. Goldberg, D.E. 1989: Genetic Algorithms in Search, Optimization and Machine Learning. Reading: Addison-Wesley

  49. Goldberg, D.E.; Richardson, J.J. 1987: Genetic algorithms with sharing for multimodal function optimization. In: Genetic Algorithms and Their Applications: Proceedings of the Second International Conference on Genetic Algorithms (held in Cambridge, MA), pp. 41–49. Hillsdale: L. Erlbaum Associates

  50. Goldberg, D.E.; Samtani, M.P. 1986: Engineering optimization via genetic algorithm. In: Proceedings of the Ninth Conference on Electronic Computation (held in Birmingham, AL), pp. 471–482. New York: American Society of Civil Engineers

  51. Haimes, Y.Y.; Lasdon, L.S.; Wismer, D.A. 1971: On a bicriterion formulation of the problems of integrated system identification and system optimization. IEEE Trans. Syst. Man Cybern. SMC-1, 296–297

    Google Scholar 

  52. Hallefjord, A.; Jornsten, K. 1986: An entropy target-point approach to multiobjective programming. Int. J. Syst. Sci. 17, 639–653

    Google Scholar 

  53. Haug, E.J.; Arora, J.S. 1979: Applied Optimal Design: Mechanical and Structural Systems. New York: Wiley and Sons

  54. Hillis, W.D. 1990: Co-evolving parasites improve simulated evolution as an optimization procedure. Physica D 42, 228–234

    Google Scholar 

  55. Hobbs, B.F. 1980: A comparison of weighting methods in power plant siting. Decis. Sci. 11, 725–737

    Google Scholar 

  56. Holland, J.H. 1975: Adaptation in Natural and Artificial Systems. Ann Arbor: The University of Michigan Press

  57. Horn, J.; Nafpliotis, N.; Goldberg, D.E. 1994: A niched Pareto genetic algorithm for multiobjective optimization. In: The First IEEE Conference on Evolutionary Computation (held in Orlando), pp. 82–87. Piscataway: IEEE Neural Networks Council

  58. Husbands, P. 1994: Distributed coevolutionary genetic algorithms for multi-criteria and multi-constraint optimization. In: Fogarty, T.C. (ed.) Evolutionary Computing (Selected papers from AISB workshop, Leeds, UK), pp. 150–165. Berlin: Springer-Verlag

  59. Hwang, C.-L.; Lai, Y.-J.; Liu, T.-Y. 1993: A new approach for multiple objective decision making. Comput. Oper. Res. 20, 889–899

    Google Scholar 

  60. Hwang, C.-L.; Md. Masud, A.S., in collaboration with Paidy, S.R. and Yoon, K. 1979: Multiple objective decision making, methods and applications: a state-of-the-art survey. In: Beckmann, M.; Kunzi, H.P. (eds.) Lecture Notes in Economics and Mathematical Systems, No. 164. Berlin: Springer-Verlag

  61. Hwang, C.-L.; Yoon, K. 1981: Multiple attribute decision making methods and applications: a state-of-the-art survey. In: Beckmann, M.; Kunzi, H.P. (eds.) Lecture Notes in Economics and Mathematical Systems, No. 186. Berlin: Springer-Verlag

  62. Ichida, K.; Fujii, Y. 1990: Multicriterion optimization using interval analysis. Comput. 44, 47–57

    Google Scholar 

  63. Ijiri, Y. 1965: Management Goals and Accounting for Control. Amsterdam: North-Holland

  64. Ishibuchi, H.; Murata, T. 1996: Multi-objective genetic local search algorithm. In: 1996 IEEE International Conference on Evolutionary Computation (held in Nagoya), pp. 119–124. Piscataway: Institute of Electrical and Electronics Engineers

  65. Jendo, S.; Marks, W.; Thierauf, G. 1985: Multicriteria optimization in optimum structural design. Large Scale Syst. 9, 141–150

    Google Scholar 

  66. Kaliszewski, I. 1985: A characterization of properly efficient solutions by an augmented Tchebycheff norm. Bull. Pol. Acad. Sci., Tech. Sci. 33, 415–420

    Google Scholar 

  67. Kaliszewski, I. 1987: A modified Tchebycheff metric for multiple objective programming. Comput. Oper. Res. 14, 315–323

    Google Scholar 

  68. Kielb, R.E.; Kaza, K.R.V. 1983: Aeroelastic characteristics of a cascade of mistuned blades in subsonic and supersonic flows. J. Vib. Acoust. Stress Reliab. Des. 105, 425–433

    Google Scholar 

  69. Kocer, F.Y.; Arora, J.S. 1999: Optimal design of H-frame transmission poles for earthquake loading. J. Struct. Eng. 125, 1299–1308

    Google Scholar 

  70. Koski, J. 1979: Truss Optimization with Vector Criterion. Report Number 6, Tampere University of Technology, Tampere, Finland

  71. Koski, J. 1980: Truss Optimization with Vector Criterion, Examples. Report Number 7, Tampere University of Technology, Tampere, Finland

  72. Koski, J. 1984: Multicriterion optimization in structural design. In: Atrek, E.; Gallagher, R.H.; Ragsdell, K.M.; Zienkiewicz, O.C. (eds.) New Directions in Optimum Structural Design, pp. 483–503. New York: John Wiley and Sons

  73. Koski, J. 1985: Defectiveness of weighting method in multicriterion optimization of structures. Commun. Appl. Numer. Methods 1, 333–337

    Google Scholar 

  74. Koski, J. 1988: Multicriteria truss optimization. In: Stadler, W. (ed.) Multicriteria Optimization in Engineering and in the Sciences. New York: Plenum Press

  75. Koski, J.; Silvennoinen, R. 1987: Norm methods and partial weighting in multicriterion optimization of structures. Int. J. Numer. Methods Eng. 24, 1101–1121

    Google Scholar 

  76. Kuhn, H.W.; Tucker, A.W. 1950: Nonlinear programming. In: Neyman, J. (ed.) The Second Berkley Symposium on Mathematical Statistics and Probability (held in Berkley 1951), pp. 481–492. Berkley: University of California Press

  77. Kursawe, F. 1991: A variant of evolution strategies for vector optimization. In: Schwefel, H.-P.; Manner, R. (eds.) Parallel Problem Solving from Nature. Berlin: Springer-Verlag

  78. Lee, S.M.; Olson, D.L. 1999: Goal programming. In: Gal, T.; Stewart, T.J.; Hanne, T. (eds.) Multicriteria Decision Making: Advances in MCDM Models, Algorithms, Theory, and Applications. Boston: Kluwer Academic Publishers

  79. Leitmann, G. 1977: Some problems of scalar and vector-valued optimization in linear viscoelasticity. J. Optim. Theory Appl. 23, 93–99

    Google Scholar 

  80. Leu, S.-S.; Yang, C.-H. 1999: GA-based multicriteria optimal model for construction scheduling. J. Constr. Eng. Manage. 125, 420–427

    Google Scholar 

  81. Li, X.S. 1992: An entropy-based aggregate method for minimax optimization. Eng. Optim. 18, 277–285

    Google Scholar 

  82. Lin, J.G. 1976: Multiple-objective problems: Pareto-optimal solutions by method of proper equality constraints. IEEE Trans. Autom. Control AC-21, 641–651

    Google Scholar 

  83. Majid, K.I. 1974: Optimal Design of Structures. London: Butterworths

  84. Mansfield, E. 1985: Microeconomics Theory/Applications, 5th edn. New York: W.W. Norton

  85. Marler, R.T.; Arora, J.S. 2003: Review of Multi-Objective Optimization Concepts and Methods for Engineering. Technical Report Number ODL-01.01, University of Iowa, Optimal Design Laboratory, Iowa City, IA

  86. Martinez, M.P.; Messac, A.; Rais-Rohani, M. 2001: Manufacturability-based optimization of aircraft structures using physical programming. AIAA J. 39, 517–525

    Google Scholar 

  87. Mazumdar, R.; Mason, L.G.; Douligeris, C. 1991: Fairness in network optimal flow control: optimality of product forms. IEEE Trans. Commun. 39, 775–782

    Google Scholar 

  88. Messac, A. 1996: Physical programming: effective optimization for computational design. AIAA J. 34, 149–158

    Google Scholar 

  89. Messac, A. 2000: From dubious construction of objective functions to the application of physical programming. AIAA J. 38, 155–163

    Google Scholar 

  90. Messac, A.; Hattis, P. 1996: Physical programming design optimization for high speed civil transport (HSCT). J. Aircr. 33, 446–449

    Google Scholar 

  91. Messac, A.; Ismail-Yahaya, A.; Mattson, C.A. 2003: The normalized normal constraint method for generating the Pareto frontier. Struct. Multidisc. Optim. 25, 86–98

    Google Scholar 

  92. Messac, A.; Mattson, C.A. 2002: Generating well-distributed sets of Pareto points for engineering design using physical programming. Optim. Eng. 3 431–450

    Google Scholar 

  93. Messac, A.; Puemi-Sukam, C.; Melachrinoudis, E. 2001: Mathematical and pragmatic perspectives of physical programming. AIAA J. 39, 885–893

    Google Scholar 

  94. Messac, A.; Sukam, C.P.; Melachrinoudis, E. 2000a: Aggregate objective functions and Pareto frontiers: required relationships and practical implications. Optim. Eng. 1, 171–188

  95. Messac, A.; Sundararaj, G.J.; Tappeta, R.V.; Renaud, J.E. 2000b: Ability of objective functions to generate points on nonconvex Pareto frontiers. AIAA J. 38, 1084–1091

  96. Messac, A.; Wilson, B. 1998: Physical programming for computational control. AIAA J. 36, 219–226

    Google Scholar 

  97. Messac, A.; Van Dessel, S.; Mullur, A.A.; Maria, A. 2004: Optimization of large scale rigidified inflatable structures for housing using physical programming. Struct. Multidisc. Optim. 26, 139–151

    Google Scholar 

  98. Miettinen, K. 1999: Nonlinear Multiobjective Optimization. Boston: Kluwer Academic Publishers

  99. Murata, T.; Ishibuchi, H.; Tanaka, H. 1996: Multi-objective genetic algorithm and its applications to flowshop scheduling. Comput. Ind. Eng. 30, 957–968

    Google Scholar 

  100. Narayana, S.; Azarm, S. 1999: On improving multiobjective genetic algorithms for design optimization. Struct. Optim. 18, 146–155

    Google Scholar 

  101. Nash, J. 1950: The bargaining problem. Econometrica 18, 155–162

    Google Scholar 

  102. Ogryczak, W. 1994: A goal programming model of the reference point method. Ann. Oper. Res. 51, 33–44

    Google Scholar 

  103. Osyczka, A. 1978: An approach to multicriterion optimization problems for engineering design. Comput. Methods Appl. Mech. Eng. 15, 309–333

    Google Scholar 

  104. Osyczka, A. 1981: An approach to multicriterion optimization for structural design. In: International Symposium on Optimal Structural Design: 11th ONR Naval Structural Mechanics Symposium (held in Tucson), pp. 10.37–10.40. Tucson: University of Arizona

  105. Osyczka, A. 1984: Multicriterion Optimization in Engineering with Fortran Programs. New York: John Wiley and Sons

  106. Osyczka, A. 1985: Computer aided multicriterion optimization method. Adv. Model. Simul. 3, 41–52

    Google Scholar 

  107. Osyczka, A.; Kundu, S. 1996: A modified distance method for multicriteria optimization, using genetic algorithms. Comput. Ind. Eng. 30, 871–882

    Google Scholar 

  108. Pareto, V. 1906: Manuale di Economica Politica, Societa Editrice Libraria. Milan; translated into English by A.S. Schwier as Manual of Political Economy, edited by A.S. Schwier and A.N. Page, 1971. New York: A.M. Kelley

  109. Poloni, C.; Giurgevich, A.; Onesti, L.; Pediroda, V. 2000: Hybridization of a multi-objective genetic algorithm, a neural network, and a classical optimizer for a complex design problem in fluid dynamics. Comput. Methods Appl. Mech. Eng. 186, 403–420

    Google Scholar 

  110. Proos, K.A.; Steven, G.P.; Querin, O.M.; Xie, Y.M. 2001: Multicriterion evolutionary structural optimization using the weighted and the global criterion methods. AIAA J. 39, 2006–2012

    Google Scholar 

  111. Psarras, J.; Capros, P.; Samouilidis, J.-E. 1990: Multiobjective programming. Energy 15, 583–605

  112. Rao, J.R.; Roy, N. 1989: Fuzzy set theoretic approach of assigning weights to objectives in multicriteria decision making. Int. J. Syst. Sci. 20, 1381–1386

    Google Scholar 

  113. Rao, S.S. 1987: Game theory approach for multiobjective structural optimization. Comput. Struct. 25, 119–127

    Google Scholar 

  114. Rao, S.S.; Freiheit, T.I. 1991: A modified game theory approach to multiobjective optimization. J. Mech. Des. 113, 286–291

    Google Scholar 

  115. Rao, S.S.; Hati, S.K. 1980: Optimum design of shock and vibration isolation systems using game theory. Eng. Optim. 4, 215–226

    Google Scholar 

  116. Rao, S.S.; Venkayya, V.B.; Khot, N.S. 1988: Game theory approach for the integrated design of structures and controls. AIAA J. 26, 463–469

    Google Scholar 

  117. Rentmeesters, M.J.; Tsai, W.K.; Lin, K.-J. 1996: A theory of lexicographic multi-criteria optimization. In: Second IEEE International Conference on Engineering of Complex Computer Systems (held in Montreal), pp. 76–79. Los Alamitos: IEEE Computer Society Press

  118. Richardson, J.T.; Palmer, M.R.; Liepins, G.; Hilliard, M. 1989: Some guidelines for genetic algorithms with penalty functions. In: Schaffer, J.D. (ed.) Third International Conference on Genetic Algorithms (held in Arlington), pp. 191–197. San Mateo: Morgan Kaufmann

  119. Romero, C.; Tamiz, M.; Jones, D.F. 1998: Goal programming, compromise programming and reference point method formulations: linkages and utility interpretations. J. Oper. Res. Soc. 49, 986–991

    Google Scholar 

  120. Roy, B.; Vincke, P. 1981: Multicriteria analysis: survey and new directions. Eur. J. Oper. Res. 8, 207–218

    Google Scholar 

  121. Ruiz-Canales, P.; Rufian-Lizana, A. 1995: A characterization of weakly efficient points. Math. Program. 68, 205–212

    Google Scholar 

  122. Saaty, T.L. 1977: A scaling method for priorities in hierarchies, multiple objectives and fuzzy sets. J. Math. Psych. 15, 234–281

    Google Scholar 

  123. Salukvadze, M.E. 1971a: Optimization of vector functionals, I, programming of optimal trajectories. Avtomatika i Telemekhanika 8, 5–15 (in Russian)

  124. Salukvadze, M.E. 1971b: Optimization of vector functionals, II, the analytic construction of optimal controls. Avtomatika i Telemekhanika 9, 5–15 (in Russian)

  125. Salukvadze, M.E. 1979: Vector-Valued Optimization Problems in Control Theory. New York: Academic Press

  126. Schaffer, J.D. 1985: Multiple objective optimization with vector evaluated genetic algorithms. In: The First International Conference on Genetic Algorithms and their Applications (held in Pittsburgh), pp. 93–100. Hillsdale: Lawrence Erlbaum Associates

  127. Schaumann, E.J.; Balling, R.J.; Day, K. 1998: Genetic algorithms with multiple objectives. In: Seventh AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization (held in St. Louis), pp. 2114–2123. Washington, DC: American Institute of Aeronautics and Astronautics

  128. Srinivas, N.; Deb, K. 1995: Multiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 2, 221–248

    Google Scholar 

  129. Stadler, W. 1977: Natural structural shapes of shallow arches. J. Appl. Mech. 44, 291–298

    Google Scholar 

  130. Stadler, W. 1978: Natural strutural shapes (the static case). Q. J. Mech. Appl. Math. 31, 169–217

  131. Stadler, W. 1987: Initiators of multicriteria optimization. In: Jahn, J.; Krabs, W. (eds.) Recent Advances and Historical Development of Vector Optimization, Lecture Notes in Economics and Mathematical Systems, No. 294, pp. 3–25. Berlin: Springer-Verlag

  132. Stadler, W. 1988: Fundamentals of multicriteria optimization. In: Stadler, W. (ed.) Multicriteria Optimization in Engineering and in the Sciences, pp. 1–25. New York: Plenum Press

  133. Stadler, W. 1995: Caveats and boons of multicriteria optimization. Microcomput. Civ. Eng. 10, 291–299

    Google Scholar 

  134. Stadler, W.; Dauer, J.P. 1992: Multicriteria optimization in engineering: a tutorial and survey. In: Kamat, M.P. (ed.) Structural Optimization: Status and Promise, pp. 211–249. Washington, DC: American Institute of Aeronautics and Astronautics

  135. Steuer, R.E. 1989: Multiple Criteria Optimization: Theory, Computation, and Application. Malabar: Robert E. Krieger Publishing

  136. Steuer, R.E.; Choo, E.-U. 1983: An interactive weighted Tchebycheff procedure for multiple objective programming. Math. Program. 26, 326–344

    Google Scholar 

  137. Straffin, P.D. 1993: Game Theory and Strategy. Washington, DC: The Mathematical Association of America

  138. Tind, J.; Wiecek, M.M. 1999: Augmented Lagrangian and Tchebycheff approaches in multiple objective programming. J. Global Optim. 14, 251–266

    Google Scholar 

  139. Torn, A.A.; Zilinskas, A. 1987: Global optimization. In: Goos, G.; Hartmanis, J. (eds.) Lecture Notes in Economics and Mathematical Systems, No. 350. Berlin: Springer-Verlag

  140. Tseng, C.H.; Lu, T.W. 1990: Minimax multiobjective optimization in structural design. Int. J. Numer. Methods Eng. 30, 1213–1228

    Google Scholar 

  141. Vasarhelhi, A.; Logo, J. 1986: Design of steel frames by multicriterion optimization. Acta Tech. (Budapest) 99, 413–418

    Google Scholar 

  142. Vincent, T.L. 1983: Game theory as a design tool. ASME J. Mech. Transm. Autom. Des. 105, 165–170

  143. Vincent, T.L.; Grantham, W.J. 1981: Optimality in Parametric Systems. New York: John Wiley and Sons

  144. Voogd, H. 1983: Multicriteria Evaluation for Urban and Regional Planning. London: Pion

  145. Waltz, F.M. 1967: An engineering approach: hierarchical optimization criteria. IEEE Trans. Autom. Control AC-12, 179–180

    Google Scholar 

  146. Wendell, R.E.; Lee, D.N. 1977: Efficiency in multiple objective optimization problems. Math. Program. 12, 406–414

    Google Scholar 

  147. Wierzbicki, A.P. 1982: A mathematical basis for satisficing decision making. Math. Model. 3, 391–405

    Google Scholar 

  148. Wierzbicki, A.P. 1986: A methodological approach to comparing parametric characterizations of efficient solutions. In: Fandel, G.; Grauer, M.; Kurzhanski, A.; Wierzbicki, A.P. (eds.) Large-Scale Modeling and Interactive Decision Analysis, Lecture Notes in Economics and Mathematical Systems, No. 273, pp. 27–45. Berlin: Springer-Verlag

  149. Yoon, K.P. 1980: System Selection by Multiple Attribute Decision Making. Ph.D. Dissertation, Kansas State University, Manhattan, KS

  150. Yoon, K.P; Hwang, C.-L. 1995: Multiple Attribute Decision Making, An Introduction. London: Sage Publications

  151. Yu, P.-L. 1973: A class of solutions for group decision problems. Manage. Sci. 19, 936–946

    Google Scholar 

  152. Yu, P.-L. 1974: Cone convexity, cone extreme points, and nondominated solutions in decision problems with multiobjectives. J. Optim. Theory Appl. 14, 319–377

    Google Scholar 

  153. Yu, P.-L. 1985: Multiple-Criteria Decision Making Concepts, Techniques, and Extensions. New York: Plenum Press

  154. Yu, P.-L.; Leitmann, G. 1974: Compromise solutions, domination structures, and Salukvadze’s solution. J. Optim. Theory Appl. 13, 362–378

    Google Scholar 

  155. Zadeh, L.A. 1963: Optimality and non-scalar-valued performance criteria. IEEE Trans. Autom. Control AC-8, 59–60

    Google Scholar 

  156. Zeleny, M. 1982: Multiple Criteria Decision Making. New York: McGraw Hill

  157. Zionts, S. 1988: Multiple criteria mathematical programming: an updated overview and several approaches. In: Mitra, G. (ed.) Mathematical Models for Decision Support, pp. 135–167. Berlin: Springer-Verlag

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.S. Arora .

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marler, R., Arora , J. Survey of multi-objective optimization methods for engineering. Struct Multidisc Optim 26, 369–395 (2004). https://doi.org/10.1007/s00158-003-0368-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-003-0368-6

Keywords

Navigation