Definable groups in dense pairs of geometric structures | Archive for Mathematical Logic Skip to main content
Log in

Definable groups in dense pairs of geometric structures

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

We study definable groups in dense/codense expansions of geometric theories with a new predicate P such as lovely pairs and expansions of fields by groups with the Mann property. We show that in such expansions, large (in the sense of dimension over the predicate) definable subgroups (the new language) of groups definable in the original language \(\mathcal {L}\) are also \(\mathcal {L}\)-definable, and definably amenable \(\mathcal {L}\)-definable groups remain amenable in the expansion. We also show that if the underlying geometric theory is NIP, and G is a group definable in a model of T, then the (type-definable) connected component \(G_{\mathcal {L}_P}^{00}\) of G in the expansion agrees with the connected component \(G^{00}\) in the original language. We prove similar preservation results for \(G\cap P(M)^n\), the P-part of G in a lovely pair (MP), and for subgroups of G in pairs (RG) where R is a real closed field and G is a subgroup of \(R^{>0}\) or the unit circle \({\mathbb {S}}(R)\) with the Mann property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baro, E., Martin-Pizarro, A.: Open core and small groups in dense pairs of topological structures. Ann. Pure Appl. Logic 172(1), 102858 (2021)

    Article  MathSciNet  Google Scholar 

  2. Belegradek, O., Zil’ber, B.: The model theory of the field of reals with a subgroup of the unit circle. J. Lond. Math. Soc. 78(3), 563–579 (2008)

  3. Berenstein, A., Vassiliev, E.: Geometric structures with a dense independent subset. Sel. Math. N. Ser. 22, 191–225 (2016)

    Article  MathSciNet  Google Scholar 

  4. Berenstein, A., Vassiliev, E.: Fields with a dense-codense linearly independent multiplicative subgroup. Arch. Math. Logic 59, 197–228 (2020)

    Article  MathSciNet  Google Scholar 

  5. Berenstein, A., Vassiliev, E.: On lovely pairs of geometric structures. Ann. Pure Appl. Logic 161(7), 866–878 (2010)

    Article  MathSciNet  Google Scholar 

  6. Berenstein, A., Vassiliev, E.: Generic trivializations of geometric theories. Math. Log. Q. 60, 289–303 (2014)

    Article  MathSciNet  Google Scholar 

  7. Blossier, T., Martin-Pizarro, A.: De beaux groupes. Confl. Math. 6, 3–13 (2014)

    Article  Google Scholar 

  8. Boxall, G., Hieronymi, P.: Expansions which introduce no new open sets. J. Symbolic Logic 77(1), 111–121 (2012)

    Article  MathSciNet  Google Scholar 

  9. Chernikov, A., Simon, P.: Definably amenable NIP groups. J. Am. Math. Soc. 31, 609–641 (2018)

    Article  MathSciNet  Google Scholar 

  10. van den Dries, L., Gunaydin, A.: The fields of real and complex numbers with a multiplicative subgroup. Proc. London Math. Soc. 93, 43–81 (2006)

    Article  MathSciNet  Google Scholar 

  11. Edmundo, M., Mamino, M., Prelli, L., Ramakrishnan, J., Terzo, G.: On Pillay’s conjecture in the general case. Adv. Math. 310, 940–992 (2017)

  12. Eleftheriou, P., Günaydin, A., Hieronymi, P.: Structure theorems in tame expansions of o-minimal structures by a dense set. Israel J. Math. 239, 435–500 (2020)

    Article  MathSciNet  Google Scholar 

  13. Eleftheriou, P.: Characterizing o-minimal groups in tame expansions of o-minimal structures. J. Inst. Math. Jussieu 20(2), 699–724 (2021)

    Article  MathSciNet  Google Scholar 

  14. García, D.: Model theory of pseudofinite structures, Lecture Notes, 2016, available at www1.maths.leeds.ac.uk/~pmtdg/NotesIPM.pdf

  15. Günaydin, A., Hieronymi, P.: The real field with the rational points of an Elliptic curve. Fundamenta Mathematica 211, 15–40 (2011)

    Article  MathSciNet  Google Scholar 

  16. Otero, M.: A survey on groups definable in o-minimal structures. In: Chatzidakis, Z., Macpherson, D., Pillay, A., Wilkie, A. (eds.) Model Theory with Applications to Algebra and Analysis, pp. 177–206. Cambridge University Press, Cambridge (2008) . (LMS LNS 350)

    Chapter  Google Scholar 

  17. Pillay, A.: On groups and fields definable in o-minimal structures. J. Pure Appl. Algebra 53(3), 239–255 (1988)

    Article  MathSciNet  Google Scholar 

  18. Palacín, D., Sklinos, R.: On superstable expansions of free abelian groups. Notre Dame J. Formal Logic 59(2), 157–169 (2018)

    Article  MathSciNet  Google Scholar 

  19. Simon, P.: A Guide to NIP Theories. Lecture Notes in Logic, Cambridge University Press, Cambridge (2015)

    Book  Google Scholar 

  20. Szmielew, W.: Elementary properties of Abelian groups. Fundam. Math. 41(2), 203–271 (1955)

    Article  MathSciNet  Google Scholar 

  21. Wagner, F.: Simple Theories. Kluwer Academic Publishers, New York (2000)

    Book  Google Scholar 

  22. Zou, T.: Pseudofinite \(H\)-structures and groups definable in supersimple \(H\)-structures. J. Symb. Log. 84(3), 937–956 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgueni Vassiliev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A. Berenstein was partially supported by Colciencias’ Project Teoría de modelos y dinámicas topológicas number 120471250707. E. Vassiliev was partially supported by the Ministry of Education and Science of the Republic of Kazakhstan (Grant AP05134992 Conservative extensions, countable ordered models, and closure operators). Both authors were also supported by the project Expansiones densas de teorías geométricas: grupos y medidas, Facultad de Ciencias, Universidad de los Andes. The authors thank Erik Walsberg for providing the proof for Proposition 4.11.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berenstein, A., Vassiliev, E. Definable groups in dense pairs of geometric structures. Arch. Math. Logic 61, 345–372 (2022). https://doi.org/10.1007/s00153-021-00793-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-021-00793-4

Keywords

Mathematics Subject Classification

Navigation