Compactness in MV-topologies: Tychonoff theorem and Stone–Čech compactification | Archive for Mathematical Logic
Skip to main content

Compactness in MV-topologies: Tychonoff theorem and Stone–Čech compactification

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

In this paper, we discuss some questions about compactness in MV-topological spaces. More precisely, we first present a Tychonoff theorem for such a class of fuzzy topological spaces and some consequence of this result, among which, for example, the existence of products in the category of Stone MV-spaces and, consequently, of coproducts in the one of limit cut complete MV-algebras. Then we show that our Tychonoff theorem is equivalent, in ZF, to the Axiom of Choice, classical Tychonoff theorem, and Lowen’s analogous result for lattice-valued fuzzy topology. Last, we show an extension of the Stone–Čech compactification functor to the category of MV-topological spaces, and we discuss its relationship with previous works on compactification for fuzzy topological spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. What we call strong compactness here is called fuzzy compactness in the theory of lattice-valued fuzzy topologies [4]. It is worth remarking, however, that such a concept appears a very few times in the literature, since it is too much restrictive. Indeed, for example, even a fuzzy topological space with finite support may not be strongly compact.

References

  1. Carlson, S.C.: The quest for a fuzzy Tychonoff theorem. Am. Math. Mon. 115(10), 871–887 (2008)

    Article  MathSciNet  Google Scholar 

  2. Cerruti, U.: The Stone–Cech compactification in the category of fuzzy topological spaces. Fuzzy Sets Syst. 6, 197–204 (1981)

    Article  Google Scholar 

  3. Chang, C.C.: Algebraic analysis of many valued logic. Trans. Am. Math. Soc. 88, 467–490 (1958)

    Article  MathSciNet  Google Scholar 

  4. Chang, C.L.: Fuzzy topological spaces. J. Math. Anal. Appl. 24(1), 182–190 (1968)

    Article  MathSciNet  Google Scholar 

  5. Cignoli, R.L.O., D’Ottaviano, I.M.L., Mundici, D.: Algebraic Foundations of Many-valued Reasoning, Trends in Logic, vol. 7. Kluwer, Dordrecht (2000)

    Book  Google Scholar 

  6. Höhle, U.: Fuzzy topologies and topological space objects in a topos. Fuzzy Sets Syst. 19, 299–304 (1986)

    Article  MathSciNet  Google Scholar 

  7. Höhle, U., Stout, L.N.: Foundations of fuzzy sets. Fuzzy Sets Syst. 40, 257–296 (1991)

    Article  MathSciNet  Google Scholar 

  8. Höhle, U., S̆ostak, A.P.: A general theory of fuzzy topological spaces. Fuzzy Sets Syst. 73, 131–149 (1995)

    Article  MathSciNet  Google Scholar 

  9. Hutton, B., Reilly, I.: Separation axioms in fuzzy topological spaces. Fuzzy Sets Syst. 3, 93–104 (1980)

    Article  MathSciNet  Google Scholar 

  10. Kelley, J.L.: The Tychonoff product theorem implies the axiom of choice. Fund. Math. 37, 7576 (1950)

    Article  MathSciNet  Google Scholar 

  11. Liu, Y.-M., Luo, M.-K.: Fuzzy Topology. World Scientific, Singapore (1997)

    MATH  Google Scholar 

  12. Lowen, R.: Fuzzy topological spaces and fuzzy compactness. J. Math. Anal. Appl. 56, 621–633 (1976)

    Article  MathSciNet  Google Scholar 

  13. Lowen, R.: Initial and final fuzzy topologies and the fuzzy Tychonoff theorem. J. Math. Anal. Appl. 58, 11–21 (1977)

    Article  MathSciNet  Google Scholar 

  14. Lowen, R.: A comparison of different compactness notions in fuzzy topological spaces. J. Math. Anal. Appl. 64(2), 446–454 (1978)

    Article  MathSciNet  Google Scholar 

  15. Martin, H.W.: A Stone–Čech ultrafuzzy compactification. J. Math. Anal. Appl. 73, 453–456 (1980)

    Article  MathSciNet  Google Scholar 

  16. Martin, H.W.: Weakly induced fuzzy topological spaces. J. Math. Anal. Appl. 78, 634–639 (1980)

    Article  MathSciNet  Google Scholar 

  17. Martin, H.W.: A characterization of fuzzy compactifications. J. Math. Anal. Appl. 133, 404–410 (1988)

    Article  MathSciNet  Google Scholar 

  18. Mundici, D.: Advanced Łukasiewicz calculus and MV-algebras. In: Trends in Logic, vol. 35, Springer (2011)

  19. Pu, P.M., Liu, Y.-M.: Fuzzy topology I: neighborhood structure of a point and Moore–Smith convergence. J. Math. Anal. Appl. 76, 571–599 (1980)

    Article  MathSciNet  Google Scholar 

  20. Rodabaugh, S.E.: Point-set lattice-theoretic topology. Fuzzy Sets Syst. 40, 297–345 (1991)

    Article  MathSciNet  Google Scholar 

  21. Rodabaugh, S.E.: Categorical framework for Stone representation theories. In: Rodabaugh, S.E., Klement, E.P., Höhle, U. (eds.) Applications of Category Theory to Fuzzy Subsets, pp. 177–232. Kluwer, Dordrecht (1992)

    Chapter  Google Scholar 

  22. Russo, C.: An extension of Stone duality to fuzzy topologies and MV-algebras. Fuzzy Sets Syst. 303, 80–96 (2016)

    Article  MathSciNet  Google Scholar 

  23. S̆ostak, A.P.: On some modifications of fuzzy topology. Mate. Vesn. 41, 51–64 (1989)

    MathSciNet  Google Scholar 

  24. S̆ostak, A.P.: Two decades of fuzzy topology: basic ideas, notions, and results. Uspekhi Mat. Nauk. 44(6), 99–147 (1989)

    MathSciNet  Google Scholar 

  25. Srivastava, R., Lal, S.N., Srivastava, A.K.: On fuzzy $T_0$ and $R_0$ topological spaces. J. Math. Anal. Appl. 136, 66–73 (1988)

    Article  MathSciNet  Google Scholar 

  26. Stout, L.N.: Topoi and categories of fuzzy sets. Fuzzy Sets Syst. 12, 169–184 (1984)

    Article  MathSciNet  Google Scholar 

  27. Stout, L.N.: A survey of fuzzy set and topos theory. Fuzzy Sets Syst. 42, 3–14 (1991)

    Article  MathSciNet  Google Scholar 

  28. Tychonoff, A.N.: Über die topologische Erweiterung von Räumen. Math. Ann. 102(1), 544–561 (1930)

    Article  MathSciNet  Google Scholar 

  29. Warren, R.H.: Neighborhood, bases and continuity in fuzzy topological spaces. Rocky Mt. J. Math. 8, 459–470 (1978)

    Article  MathSciNet  Google Scholar 

Download references

Funding

The funding was provided by Fapesb (Grant No. APP0072/2016) and Colciencias (Grant No. Ph.D. scholarship doctoral scholarship “Doctorado Nacional-567”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ciro Russo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De La Pava, L.V., Russo, C. Compactness in MV-topologies: Tychonoff theorem and Stone–Čech compactification. Arch. Math. Logic 59, 57–79 (2020). https://doi.org/10.1007/s00153-019-00679-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-019-00679-6

Keywords

Mathematics Subject Classification