Borel globalizations of partial actions of Polish groups | Archive for Mathematical Logic
Skip to main content

Borel globalizations of partial actions of Polish groups

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

We show that the enveloping space \({\mathbb {X}}_G\) of a partial action of a Polish group G on a Polish space \({\mathbb {X}}\) is a standard Borel space, that is to say, there is a topology \(\tau \) on \({\mathbb {X}}_G\) such that \(({\mathbb {X}}_G, \tau )\) is Polish and the quotient Borel structure on \({\mathbb {X}}_G\) is equal to \(Borel({\mathbb {X}}_G,\tau )\). To prove this result we show a generalization of a theorem of Burgess about Borel selectors for the orbit equivalence relation induced by a group action and also show that some properties of the Vaught’s transform are valid for partial actions of groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abadie, F.: Enveloping actions and Takai duality for partial actions. J. Funct. Anal. 197, 14–67 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ara, P., Exel, R.: Dynamical systems associated to separated graphs, graph algebras, and paradoxical decompositions. Adv. Math. 252, 748–804 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ara, P., Exel, R., Katsura, T.: Dynamical systems of type \((m, n)\) and their \(C^*\)-algebras. Ergod. Theory Dyn. Syst. 33(5), 1291–1325 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Becker, H., Kechris, A.: The Descriptive Set Theory of Polish Group Actions (London Math. Soc. Lect. Notes) (1996)

  5. Boava, G., Exel, R.: Partial crossed product description of the \( C^*\)-algebras associated with integral domains. Proc. AMS 141(7), 2439–2451 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Burgess, J.: A selection theorem for group actions. Pac. J. Math. 80, 333–336 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dokuchaev, M.: Partial actions: a survey. Contemp. Math. 537, 173–184 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Effros, E.G.: Transformations groups and \(C^*\)-algebras. Ann. Math. 81, 38–55 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  9. Exel, R.: Circle actions on \(C^*\)-algebras, partial automorphisms and generalized Pimsner-Voiculescu exact sequences. J. Funct. Anal. 122(3), 361–401 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Exel, R.: The Bunce–Deddens algebras as crossed products by partial automorphisms. Bol. Soc. Brasil. Mat. (N.S.) 25, 173–179 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Exel, R.: Approximately finite \(C^*\)-algebras and partial automorphisms. Math. Scand. 77, 281–288 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Exel, R.: Twisted partial actions: a classification of regular \(C^*\)-algebraic bundles. Proc. Lond. Math. Soc. 74(3), 417–443 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Exel, R.: Amenability for Fell Bundles. J. Reine Angew. Math. 492, 41–73 (1997)

    MathSciNet  MATH  Google Scholar 

  14. Exel, R.: Partial actions of groups and actions of inverse semigroups. Proc. Am. Math. Soc. 126(12), 3481–3494 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Exel, R., Giordano, T., Gonçalves, D.: Enveloping algebras of partial actions as groupoid \(C^*\)-algebras. J. Oper. Theory 65, 197–210 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Gao, S.: Invariant Descriptive Set Theory. Chapmann & Hall, Boca Raton (2009)

    MATH  Google Scholar 

  17. Gómez, J., Pinedo, H., Uzcátegui, C.: The open mapping principle for partial actions of polish groups. arXiv:1709.01977v1

  18. Harrington, L., Kechris, A., Louveau, A.: A Glimm-Effros dichotomy for Borel equivalence relations. J. Am. Math. Soc. 3(4), 903–928 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kechris, A.: Classical Descriptive Set Theory. Springer, New York (1995)

    Book  MATH  Google Scholar 

  20. Kechris, A.: Countable sections for locally compact group actions. Ergod. Theory Dyn. Syst. 12, 283–295 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kellendonk, J., Lawson, M.V.: Partial actions of groups. Int. J. Algebra Comput. 14, 87–114 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lupini, M.: Polish groupoids and functorial complexity. arXiv:1407.6671v2

  23. Mackey, G.W.: Borel structure in groups and their duals. Trans. Am. Math. Soc. 85, 134–165 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  24. Megrelishvili, M.G., Schröder, L.: Globalization of confluent partial actions on topological and metric spaces. Topol. Appl. 145, 119–145 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pinedo, H., Uzcátegui, C.: Polish globalization of polish group partial actions. Math. Log. Quart. (to appear)

  26. Quigg, J.C., Raeburn, I.: Characterizations of crossed products by partial actions. J. Oper. Theory 37, 311–340 (1997)

    MATH  Google Scholar 

  27. Steinberg, B.: Partial actions of groups on cell complexes. Monatsh. Math. 138(2), 159–170 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Vaught, R.L.: Invariant sets in topology and logic. Fund. Math. 82, 269–294 (1974)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Uzcategui.

Additional information

The authors thank La Vicerrectoría de Investigación y Extensión de la Universidad Industrial de Santander for the financial support for this work, which is part of the VIE Project # 5761.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinedo, H., Uzcategui, C. Borel globalizations of partial actions of Polish groups. Arch. Math. Logic 57, 617–627 (2018). https://doi.org/10.1007/s00153-017-0598-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-017-0598-8

Keywords

Mathematics Subject Classification