Well-foundedness in Realizability | Archive for Mathematical Logic
Skip to main content

Well-foundedness in Realizability

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

References

  1. Blass A. (1983) Words, free algebras, and coequalizers. Fundam. Math. 117, 117–160

    MATH  MathSciNet  Google Scholar 

  2. Fourman M.P., Scott D.S. (1979). Sheaves and Logic. In: Fourman M.P., Mulvey C.J., Scott D.S. (eds). Applications of Sheaves. Springer, Berlin Heideberg New York, pp. 302–401

    Chapter  Google Scholar 

  3. Friedman H.M., Scedrov A. (1986) Intuitionistically provable recursive well-orderings. Ann. Pure Appl. Logic 30, 165–171

    Article  MATH  MathSciNet  Google Scholar 

  4. Hyland J.M.E. (1982). The effective topos. In: Troelstra A.S., Van Dalen D. (eds). The L.E.J. Brouwer Centenary Symposium. North Holland Publishing Company, Amsterdam, pp. 165–216

    Google Scholar 

  5. Jibladze M. (1997) A presentation of the initial lift algebra. J. Pure Appl. Algebra 116, 185–198

    Article  MATH  MathSciNet  Google Scholar 

  6. Johnstone P.T. (2002) Sketches of an Elephant (2 vols.). vol. 43 of Oxford Logic Guides. Clarendon Press, Oxford

    Google Scholar 

  7. Joyal A., Moerdijk I. (1995) Algebraic Set Theory vol. 220 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge

    Google Scholar 

  8. KouwenhovenGentil, C., van Oosten, J. Algebraic set theory and the effective topos. J. Symbolic Logic 70(3), 879–890 (2005, to appear)

    Google Scholar 

  9. Kreisel G. (1953) A variant to Hilbert’s theory of the foundations of arithmetic. Br. J. Philos. Sci. 4, 107–127

    Article  MathSciNet  Google Scholar 

  10. Kreisel G., Shoenfield J., Wang H. (1960) Number-theoretic concepts and recursive well-orderings. Arch. Math. Logik Grundlag. 5, 42–64

    Article  MathSciNet  Google Scholar 

  11. McCarty, D.C. Realizability and recursive mathematics. D.Phil. Thesis, University of Oxford (1984)

  12. Moerdijk I., Palmgren E. (2000) Wellfounded trees in categories. Ann. Pure Appl. Logic 104, 189–218

    Article  MATH  MathSciNet  Google Scholar 

  13. Rosolini, G. Continuity and effectiveness in topoi. Ph.D. Thesis, University of Oxford (1986)

  14. Troelstra, A.S. (ed.): Metamathematical Investigation of Intuitionistic Arithmetic and Analysis. Springer (Lecture Notes in Mathematics 344), 1973. With contributions by A.S. Troelstra, C.A. Smoryński, J.I. Zucker and W.A. Howard

  15. van den Berg, B., Kouwenhoven-Gentil, C. W-types in Eff. Manuscript, available at http://www.math.uu.nl/people/jvoosten/realizability/WinEff.ps, 2004

  16. van Oosten J. (1994) Axiomatizing higher-order Kleene realizability. Ann. Pure Appl. Logic 70, 87–111

    Article  MATH  MathSciNet  Google Scholar 

  17. van Oosten J., Simpson A.K. (2000) Axioms and (counter)examples in synthetic domain theory. Ann. Pure Appl. Logic 104, 233–278

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. van Oosten.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofmann, M., van Oosten, J. & Streicher, T. Well-foundedness in Realizability. Arch. Math. Logic 45, 795–805 (2006). https://doi.org/10.1007/s00153-006-0003-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-006-0003-5

Keywords