References
Blass A. (1983) Words, free algebras, and coequalizers. Fundam. Math. 117, 117–160
Fourman M.P., Scott D.S. (1979). Sheaves and Logic. In: Fourman M.P., Mulvey C.J., Scott D.S. (eds). Applications of Sheaves. Springer, Berlin Heideberg New York, pp. 302–401
Friedman H.M., Scedrov A. (1986) Intuitionistically provable recursive well-orderings. Ann. Pure Appl. Logic 30, 165–171
Hyland J.M.E. (1982). The effective topos. In: Troelstra A.S., Van Dalen D. (eds). The L.E.J. Brouwer Centenary Symposium. North Holland Publishing Company, Amsterdam, pp. 165–216
Jibladze M. (1997) A presentation of the initial lift algebra. J. Pure Appl. Algebra 116, 185–198
Johnstone P.T. (2002) Sketches of an Elephant (2 vols.). vol. 43 of Oxford Logic Guides. Clarendon Press, Oxford
Joyal A., Moerdijk I. (1995) Algebraic Set Theory vol. 220 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge
KouwenhovenGentil, C., van Oosten, J. Algebraic set theory and the effective topos. J. Symbolic Logic 70(3), 879–890 (2005, to appear)
Kreisel G. (1953) A variant to Hilbert’s theory of the foundations of arithmetic. Br. J. Philos. Sci. 4, 107–127
Kreisel G., Shoenfield J., Wang H. (1960) Number-theoretic concepts and recursive well-orderings. Arch. Math. Logik Grundlag. 5, 42–64
McCarty, D.C. Realizability and recursive mathematics. D.Phil. Thesis, University of Oxford (1984)
Moerdijk I., Palmgren E. (2000) Wellfounded trees in categories. Ann. Pure Appl. Logic 104, 189–218
Rosolini, G. Continuity and effectiveness in topoi. Ph.D. Thesis, University of Oxford (1986)
Troelstra, A.S. (ed.): Metamathematical Investigation of Intuitionistic Arithmetic and Analysis. Springer (Lecture Notes in Mathematics 344), 1973. With contributions by A.S. Troelstra, C.A. Smoryński, J.I. Zucker and W.A. Howard
van den Berg, B., Kouwenhoven-Gentil, C. W-types in Eff. Manuscript, available at http://www.math.uu.nl/people/jvoosten/realizability/WinEff.ps, 2004
van Oosten J. (1994) Axiomatizing higher-order Kleene realizability. Ann. Pure Appl. Logic 70, 87–111
van Oosten J., Simpson A.K. (2000) Axioms and (counter)examples in synthetic domain theory. Ann. Pure Appl. Logic 104, 233–278
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hofmann, M., van Oosten, J. & Streicher, T. Well-foundedness in Realizability. Arch. Math. Logic 45, 795–805 (2006). https://doi.org/10.1007/s00153-006-0003-5
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00153-006-0003-5