A proof-theoretical investigation of global intuitionistic (fuzzy) logic | Archive for Mathematical Logic
Skip to main content

A proof-theoretical investigation of global intuitionistic (fuzzy) logic

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract.

We perform a proof-theoretical investigation of two modal predicate logics: global intuitionistic logic GI and global intuitionistic fuzzy logic GIF. These logics were introduced by Takeuti and Titani to formulate an intuitionistic set theory and an intuitionistic fuzzy set theory together with their metatheories. Here we define analytic Gentzen style calculi for GI and GIF. Among other things, these calculi allows one to prove Herbrand’s theorem for suitable fragments of GI and GIF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aoyama, H.: The semantic Completeness of a Global Intuitionistic Logic. Math. Log. Quart. 44, 167–175 (1998)

    Google Scholar 

  2. Avron, A.: Hypersequents, Logical Consequence and Intermediate Logics for Concurrency. Ann. Math. Arti. Intel. 4, 225–248 (1991)

    Article  Google Scholar 

  3. Avron, A.: The Method of Hypersequents in the Proof Theory of Propositional Nonclassical Logics.In: Logic: from Foundations to Applications, European Logic Colloquium, Oxford Science Publications. Clarendon Press, Oxford, 1996, pp. 1–32

  4. Baaz, M.: Infinite-valued Gödel logics with 0-1-projections and relativizations. Gödel 96. Kurt Gödel’s Legacy, LNL, vol. 6 of LNL, 1996, pp. 23–33

  5. Baaz, M., Ciabattoni, A.: A Schütte-Tait style cut-elimination proof for first-order Gödel logic. In: Automated Reasoning with Tableaux and Related Methods (Tableaux’02), vol. 2381 of LNAI, 2002, pp. 24–38

  6. Baaz, M., Ciabattoni, A., Fermüller, C.: Herbrand’s Theorem for Prenex Gödel Logic and its Consequences for Theorem Proving. In: Logic for Programming, Artificial Intelligence and Reasoning (LPAR’2001), LNAI, vol. 2250 of LNAI, 2001, pp. 201–216

  7. Baaz, M., Ciabattoni, A., Fermüller, C.: Hypersequent Calculi for Gödel Logics – a Survey. J. Logic and Comput. 13, 1–27 (2003)

    Article  Google Scholar 

  8. Baaz, M., Zach, R.: Hypersequents and the proof theory of intuitionistic fuzzy logic. In: Computer Science Logic (CSL’2000), LNCS, vol. 1862 of LNCS, 2000, pp. 187–201

  9. Dummett, M.: A Propositional Logic with Denumerable Matrix. J. Symbolic Logic 24, 96–107 (1959)

    Google Scholar 

  10. Gabbay, D.: Decidability of some intuitionistic predicate theories. J. Symbolic Logic 37, 579–587 (1972)

    Google Scholar 

  11. Gentzen, G.: Untersuchungen über das logische Schliessen I and II. Math. Z. 39, 176–210, 405–431 (1934)

    Article  Google Scholar 

  12. Gödel, K.: Zum Intuitionistischen Aussagenkalkul. Ergebnisse eines mathematischen Kolloquiums 4, 34–38 (1933)

    Google Scholar 

  13. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, 1998

  14. Ono, H.: On some intuitionistic modal logic. In: Publications of Research Institute for Mathematical Sciences, vol. 13, Kyoto University, 1977, pp. 687–722

  15. Schütte, K.: Beweistheorie. Springer Verlag, 1960

  16. Tait, W.W.: Normal derivability in classical logic. In: The Sintax and Semantics of infinitary Languages, LNM 72, 1968, pp. 204–236

  17. Takano, M.: Another proof of the strong completeness of the intuitionistic fuzzy logic. Tsukuba J. Math. 11, 851–866 (1984)

    Google Scholar 

  18. Takeuti, G.: Proof Theory. 2nd edn, North-Holland, 1987

  19. Takeuti, G., Titani, T.: Intuitionistic fuzzy logic and intuitionistic fuzzy set theory. J. Symbolic Logic 49, 851–866 (1984)

    Google Scholar 

  20. Takeuti, G., Titani, T.: Global intuitionistic fuzzy set theory. In: The Mathematics of Fuzzy Systems, TUV-Verlag, 1986, pp. 291–301

  21. Takeuti, G., Titani, T.: Globalization of intuitionistic set theory. Ann. Pure Appl. Logic 33, 195–211 (1987)

    Article  Google Scholar 

  22. Titani, T.: Completeness of Global Intuitionistic Set Theory. J. Symbolic Logic 62(2), 506–528 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agata Ciabattoni.

Additional information

Work Supported by C. Bühler-Habilitations-Stipendium H191-N04, from the Austrian Science Fund (FWF).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciabattoni, A. A proof-theoretical investigation of global intuitionistic (fuzzy) logic. Arch. Math. Logic 44, 435–457 (2005). https://doi.org/10.1007/s00153-004-0265-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-004-0265-8

Key words or phrases: