Abstract.
We perform a proof-theoretical investigation of two modal predicate logics: global intuitionistic logic GI and global intuitionistic fuzzy logic GIF. These logics were introduced by Takeuti and Titani to formulate an intuitionistic set theory and an intuitionistic fuzzy set theory together with their metatheories. Here we define analytic Gentzen style calculi for GI and GIF. Among other things, these calculi allows one to prove Herbrand’s theorem for suitable fragments of GI and GIF.
Similar content being viewed by others
References
Aoyama, H.: The semantic Completeness of a Global Intuitionistic Logic. Math. Log. Quart. 44, 167–175 (1998)
Avron, A.: Hypersequents, Logical Consequence and Intermediate Logics for Concurrency. Ann. Math. Arti. Intel. 4, 225–248 (1991)
Avron, A.: The Method of Hypersequents in the Proof Theory of Propositional Nonclassical Logics.In: Logic: from Foundations to Applications, European Logic Colloquium, Oxford Science Publications. Clarendon Press, Oxford, 1996, pp. 1–32
Baaz, M.: Infinite-valued Gödel logics with 0-1-projections and relativizations. Gödel 96. Kurt Gödel’s Legacy, LNL, vol. 6 of LNL, 1996, pp. 23–33
Baaz, M., Ciabattoni, A.: A Schütte-Tait style cut-elimination proof for first-order Gödel logic. In: Automated Reasoning with Tableaux and Related Methods (Tableaux’02), vol. 2381 of LNAI, 2002, pp. 24–38
Baaz, M., Ciabattoni, A., Fermüller, C.: Herbrand’s Theorem for Prenex Gödel Logic and its Consequences for Theorem Proving. In: Logic for Programming, Artificial Intelligence and Reasoning (LPAR’2001), LNAI, vol. 2250 of LNAI, 2001, pp. 201–216
Baaz, M., Ciabattoni, A., Fermüller, C.: Hypersequent Calculi for Gödel Logics – a Survey. J. Logic and Comput. 13, 1–27 (2003)
Baaz, M., Zach, R.: Hypersequents and the proof theory of intuitionistic fuzzy logic. In: Computer Science Logic (CSL’2000), LNCS, vol. 1862 of LNCS, 2000, pp. 187–201
Dummett, M.: A Propositional Logic with Denumerable Matrix. J. Symbolic Logic 24, 96–107 (1959)
Gabbay, D.: Decidability of some intuitionistic predicate theories. J. Symbolic Logic 37, 579–587 (1972)
Gentzen, G.: Untersuchungen über das logische Schliessen I and II. Math. Z. 39, 176–210, 405–431 (1934)
Gödel, K.: Zum Intuitionistischen Aussagenkalkul. Ergebnisse eines mathematischen Kolloquiums 4, 34–38 (1933)
Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, 1998
Ono, H.: On some intuitionistic modal logic. In: Publications of Research Institute for Mathematical Sciences, vol. 13, Kyoto University, 1977, pp. 687–722
Schütte, K.: Beweistheorie. Springer Verlag, 1960
Tait, W.W.: Normal derivability in classical logic. In: The Sintax and Semantics of infinitary Languages, LNM 72, 1968, pp. 204–236
Takano, M.: Another proof of the strong completeness of the intuitionistic fuzzy logic. Tsukuba J. Math. 11, 851–866 (1984)
Takeuti, G.: Proof Theory. 2nd edn, North-Holland, 1987
Takeuti, G., Titani, T.: Intuitionistic fuzzy logic and intuitionistic fuzzy set theory. J. Symbolic Logic 49, 851–866 (1984)
Takeuti, G., Titani, T.: Global intuitionistic fuzzy set theory. In: The Mathematics of Fuzzy Systems, TUV-Verlag, 1986, pp. 291–301
Takeuti, G., Titani, T.: Globalization of intuitionistic set theory. Ann. Pure Appl. Logic 33, 195–211 (1987)
Titani, T.: Completeness of Global Intuitionistic Set Theory. J. Symbolic Logic 62(2), 506–528 (1997)
Author information
Authors and Affiliations
Corresponding author
Additional information
Work Supported by C. Bühler-Habilitations-Stipendium H191-N04, from the Austrian Science Fund (FWF).
Rights and permissions
About this article
Cite this article
Ciabattoni, A. A proof-theoretical investigation of global intuitionistic (fuzzy) logic. Arch. Math. Logic 44, 435–457 (2005). https://doi.org/10.1007/s00153-004-0265-8
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00153-004-0265-8