Abstract
This paper proposes a novel visual model to detect the salient regions of the target in complex tracking scenarios. The main idea of the proposed visual model is to generate an overcomplete set of local image patches to describe the multiscale regions of the target, and select the most important and reliable regions. The importance of each patch is evaluated by its stability and discrimination in the local feature space, while the reliability is measured by the contrast of the target and its surrounding background in the global feature space. By combining the importance and reliability, the salient regions are selected from the patch set to represent the target. Experimental results on benchmark video sequences show that the proposed visual model can improve the tracking performance effectively.
Similar content being viewed by others
References
Adam, A., Rivlin, E., Shimshoni, I.: Robust fragments-based tracking using the integral histogram. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 798–805. IEEE (2006)
Yang, M., Yuan, J., Wu, Y.: Spatial selection for attentional visual tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE, pp. 1–8 (2007)
Fan, J., Wu, Y., Dai, S.: Discriminative spatial attention for robust tracking. In: Computer Vision—ECCV 2010, pp. 480–493. Springer (2010)
Cehovin, L., Kristan, M., Leonardis, A.: Robust visual tracking using an adaptive coupled-layer visual model. IEEE Trans. Pattern Anal. Mach. Intell. 35(4), 941–953 (2013)
Black, M.J., Jepson, A.D.: Eigentracking: robust matching and tracking of articulated objects using a view-based representation. Int. J. Comput. Vis. 26(1), 63–84 (1998)
Isard, M., Blake, A.: Condensationconditional density propagation for visual tracking. Int. J. Comput. Vis. 29(1), 5–28 (1998)
Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IEEE Trans. Pattern Anal. Mach. Intell. 25(5), 564–577 (2003)
Collins, R.T., Liu, Y., Leordeanu, M.: Online selection of discriminative tracking features. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1631–1643 (2005)
Yao, Z., Liu, W.: Extracting robust distribution using adaptive gaussian mixture model and online feature selection. Neurocomputing 101, 258–274 (2013)
Mei, X., Ling, H.: Robust visual tracking using l1 minimization. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 1436–1443. IEEE (2009)
Bao, C., Wu, Y., Ling, H., Ji, H.: Real time robust l1 tracker using accelerated proximal gradient approach. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1830–1837. IEEE (2012)
Zhang, T., Ghanem, B., Liu, S., Ahuja, N.: Robust visual tracking via multi-task sparse learning. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2042–2049. IEEE (2012)
Lim, J., Ross, D.A., Lin, R.-S., Yang, M.-H.: Incremental learning for visual tracking. In: Advances in Neural Information Processing Systems (NIPS), vol. 17, pp. 793–800. Vancouver, British Columbia, Canada (2004)
Ross, D.A., Lim, J., Lin, R.-S., Yang, M.-H.: Incremental learning for robust visual tracking. Int. J. Comput. Vis. 77(1–3), 125–141 (2008)
Zhou, Y., Bai, X., Liu, W., Latecki, L.J.: Fusion with diffusion for robust visual tracking. In: Advances in Neural Information Processing Systems (NIPS), vol. 25, pp. 2978–2986. Lake Tahoe, Harrahs and Harveys, USA (2012)
Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: Exploiting the circulant structure of tracking-by-detection with kernels. In: Computer Vision—ECCV 2012, pp. 702–715. Springer (2012)
Zhang, K., Zhang, L., Yang, M.-H., Zhang, D.: Fast tracking via spatio-temporal context learning. arXiv preprint arXiv:1311.1939
Kwon, J., Lee, K.M.: Tracking of a non-rigid object via patch-based dynamic appearance modeling and adaptive basin hopping monte carlo sampling. In: IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009, pp. 1208–1215. IEEE (2009)
Kwon, J., Lee, K.M.: Highly nonrigid object tracking via patch-based dynamic appearance modeling. IEEE Trans. Pattern Anal. Mach. Intell. 35(10), 2427–2441 (2013)
Li, Y., Zhu, J., Hoi, S.C.H.: Reliable patch trackers: robust visual tracking by exploiting reliable patches. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 353–361 (2015). doi:10.1109/CVPR.2015.7298632
Zhang, K., Zhang, L., Yang, M.-H.: Real-time compressive tracking. In: Computer Vision—ECCV 2012, pp. 864–877. Springer (2012)
Zhang, K., Zhang, L., Yang, M.-H.: Fast compressive tracking. IEEE Trans. Pattern Anal. Mach. Intell. 36(10), 2002–2015 (2014)
Tsagkatakis, G., Savakis, A.: Online distance metric learning for object tracking. IEEE Trans. Circuits Syst. Video Technol. 21(12), 1810–1821 (2011)
Sevilla-Lara, L., Learned-Miller, E.: Distribution fields for tracking, In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1910–1917. IEEE (2012)
Babenko, B., Yang, M.-H., Belongie, S.: Visual tracking with online multiple instance learning. In: IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009, pp. 983–990. IEEE (2009)
Wang, Q., Chen, F., Xu, W., Yang, M.-H.: Object tracking via partial least squares analysis. IEEE Trans. Image Process. 21(10), 4454–4465 (2012)
Hare, S., Saffari, A., Torr, P.H.: Struck: structured output tracking with kernels. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 263–270. IEEE (2011)
Zhang, T., Liu, S., Ahuja, N.: Robust visual tracking via consistent low-rank sparse learning. Int. J. Comput. Vis. 111(2), 171–190 (2015)
Wu, Y., Lim, J., Yang, M.-H.: Online object tracking: a benchmark. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2411–2418. IEEE (2013)
Acknowledgements
We thank anonymous reviewers for their very useful comments and suggestions. This work was supported in part by the National Natural Science Foundation of China under Grant 61572207.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yi, S., Liu, W. Multiscale salient region-based visual tracking. Machine Vision and Applications 28, 327–339 (2017). https://doi.org/10.1007/s00138-017-0836-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00138-017-0836-4