Multiscale salient region-based visual tracking | Machine Vision and Applications Skip to main content
Log in

Multiscale salient region-based visual tracking

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

This paper proposes a novel visual model to detect the salient regions of the target in complex tracking scenarios. The main idea of the proposed visual model is to generate an overcomplete set of local image patches to describe the multiscale regions of the target, and select the most important and reliable regions. The importance of each patch is evaluated by its stability and discrimination in the local feature space, while the reliability is measured by the contrast of the target and its surrounding background in the global feature space. By combining the importance and reliability, the salient regions are selected from the patch set to represent the target. Experimental results on benchmark video sequences show that the proposed visual model can improve the tracking performance effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Adam, A., Rivlin, E., Shimshoni, I.: Robust fragments-based tracking using the integral histogram. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 798–805. IEEE (2006)

  2. Yang, M., Yuan, J., Wu, Y.: Spatial selection for attentional visual tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE, pp. 1–8 (2007)

  3. Fan, J., Wu, Y., Dai, S.: Discriminative spatial attention for robust tracking. In: Computer Vision—ECCV 2010, pp. 480–493. Springer (2010)

  4. Cehovin, L., Kristan, M., Leonardis, A.: Robust visual tracking using an adaptive coupled-layer visual model. IEEE Trans. Pattern Anal. Mach. Intell. 35(4), 941–953 (2013)

    Article  Google Scholar 

  5. Black, M.J., Jepson, A.D.: Eigentracking: robust matching and tracking of articulated objects using a view-based representation. Int. J. Comput. Vis. 26(1), 63–84 (1998)

    Article  Google Scholar 

  6. Isard, M., Blake, A.: Condensationconditional density propagation for visual tracking. Int. J. Comput. Vis. 29(1), 5–28 (1998)

    Article  Google Scholar 

  7. Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IEEE Trans. Pattern Anal. Mach. Intell. 25(5), 564–577 (2003)

    Article  Google Scholar 

  8. Collins, R.T., Liu, Y., Leordeanu, M.: Online selection of discriminative tracking features. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1631–1643 (2005)

    Article  Google Scholar 

  9. Yao, Z., Liu, W.: Extracting robust distribution using adaptive gaussian mixture model and online feature selection. Neurocomputing 101, 258–274 (2013)

    Article  Google Scholar 

  10. Mei, X., Ling, H.: Robust visual tracking using l1 minimization. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 1436–1443. IEEE (2009)

  11. Bao, C., Wu, Y., Ling, H., Ji, H.: Real time robust l1 tracker using accelerated proximal gradient approach. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1830–1837. IEEE (2012)

  12. Zhang, T., Ghanem, B., Liu, S., Ahuja, N.: Robust visual tracking via multi-task sparse learning. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2042–2049. IEEE (2012)

  13. Lim, J., Ross, D.A., Lin, R.-S., Yang, M.-H.: Incremental learning for visual tracking. In: Advances in Neural Information Processing Systems (NIPS), vol. 17, pp. 793–800. Vancouver, British Columbia, Canada (2004)

  14. Ross, D.A., Lim, J., Lin, R.-S., Yang, M.-H.: Incremental learning for robust visual tracking. Int. J. Comput. Vis. 77(1–3), 125–141 (2008)

    Article  Google Scholar 

  15. Zhou, Y., Bai, X., Liu, W., Latecki, L.J.: Fusion with diffusion for robust visual tracking. In: Advances in Neural Information Processing Systems (NIPS), vol. 25, pp. 2978–2986. Lake Tahoe, Harrahs and Harveys, USA (2012)

  16. Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: Exploiting the circulant structure of tracking-by-detection with kernels. In: Computer Vision—ECCV 2012, pp. 702–715. Springer (2012)

  17. Zhang, K., Zhang, L., Yang, M.-H., Zhang, D.: Fast tracking via spatio-temporal context learning. arXiv preprint arXiv:1311.1939

  18. Kwon, J., Lee, K.M.: Tracking of a non-rigid object via patch-based dynamic appearance modeling and adaptive basin hopping monte carlo sampling. In: IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009, pp. 1208–1215. IEEE (2009)

  19. Kwon, J., Lee, K.M.: Highly nonrigid object tracking via patch-based dynamic appearance modeling. IEEE Trans. Pattern Anal. Mach. Intell. 35(10), 2427–2441 (2013)

    Article  MathSciNet  Google Scholar 

  20. Li, Y., Zhu, J., Hoi, S.C.H.: Reliable patch trackers: robust visual tracking by exploiting reliable patches. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 353–361 (2015). doi:10.1109/CVPR.2015.7298632

  21. Zhang, K., Zhang, L., Yang, M.-H.: Real-time compressive tracking. In: Computer Vision—ECCV 2012, pp. 864–877. Springer (2012)

  22. Zhang, K., Zhang, L., Yang, M.-H.: Fast compressive tracking. IEEE Trans. Pattern Anal. Mach. Intell. 36(10), 2002–2015 (2014)

    Article  Google Scholar 

  23. Tsagkatakis, G., Savakis, A.: Online distance metric learning for object tracking. IEEE Trans. Circuits Syst. Video Technol. 21(12), 1810–1821 (2011)

  24. Sevilla-Lara, L., Learned-Miller, E.: Distribution fields for tracking, In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1910–1917. IEEE (2012)

  25. Babenko, B., Yang, M.-H., Belongie, S.: Visual tracking with online multiple instance learning. In: IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009, pp. 983–990. IEEE (2009)

  26. Wang, Q., Chen, F., Xu, W., Yang, M.-H.: Object tracking via partial least squares analysis. IEEE Trans. Image Process. 21(10), 4454–4465 (2012)

    Article  MathSciNet  Google Scholar 

  27. Hare, S., Saffari, A., Torr, P.H.: Struck: structured output tracking with kernels. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 263–270. IEEE (2011)

  28. Zhang, T., Liu, S., Ahuja, N.: Robust visual tracking via consistent low-rank sparse learning. Int. J. Comput. Vis. 111(2), 171–190 (2015)

    Article  Google Scholar 

  29. Wu, Y., Lim, J., Yang, M.-H.: Online object tracking: a benchmark. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2411–2418. IEEE (2013)

Download references

Acknowledgements

We thank anonymous reviewers for their very useful comments and suggestions. This work was supported in part by the National Natural Science Foundation of China under Grant 61572207.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenyu Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, S., Liu, W. Multiscale salient region-based visual tracking. Machine Vision and Applications 28, 327–339 (2017). https://doi.org/10.1007/s00138-017-0836-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-017-0836-4

Keywords

Navigation