Accurate ball detection in soccer images using probabilistic analysis of salient regions | Machine Vision and Applications
Skip to main content

Accurate ball detection in soccer images using probabilistic analysis of salient regions

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

Automatic sport video analysis has became one of the most attractive research fields in the areas of computer vision and multimedia technologies. In particular, there has been a boom in soccer video analysis research. This paper presents a new multi-step algorithm to automatically detect the soccer ball in image sequences acquired from static cameras. In each image, candidate ball regions are selected by analyzing edge circularity and then ball patterns are extracted representing locally affine invariant regions around distinctive points which have been highlighted automatically. The effectiveness of the proposed methodologies is demonstrated through a huge number of experiments using real balls under challenging conditions, as well as a favorable comparison with some of the leading approaches from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hung, M.-H., Hsieh, C.-H., Kuo, C.-M., Pan, J.-S.: Generalized playfield segmentation of sport videos using color features. Pattern Recogn. Lett. 32, 987–1000 (2011)

    Article  Google Scholar 

  2. Choi, K., Seo, Y.: Automatic initialization for 3D soccer player tracking. Pattern Recogn. Lett. 32, 1274–1282 (2011)

    Article  Google Scholar 

  3. Gao, X., Niu, Z., Tao, D., Li, X.: Non-goal scene analysis for soccer video. Neurocomputing 74, 540–548 (2011)

    Article  Google Scholar 

  4. Watve, A., Sural, S.: Soccer video processing for the detection of advertisement billboards. Pattern Recogn. Lett. 29, 994–1006 (2008)

    Article  Google Scholar 

  5. Liu, J., Tong, X., Li, W., Wang, T., Zhang, Y., Wang, H.: Automatic player detection, labeling and tracking in broadcast soccer video. Pattern Recogn. Lett. 30, 103–113 (2009)

    Google Scholar 

  6. Leo, M., Mosca, N., Spagnolo, P., Mazzeo, P.L., D’Orazio, T., Distante, A.: A visual framework for interaction detection in soccer matches. IJPRAI 24, 499–530 (2010)

    Google Scholar 

  7. Ekin, A., Tekalp, A., Mehrotra, R.: Automatic soccer video analysis and summarization. IEEE Trans. Image Process. 12, 796–807 (2003)

    Article  Google Scholar 

  8. Theodosiou, Z., Kounoudes, A., Tsapatsoulis, N., Milis, M.: Mulvat: A video annotation tool based on xml-dictionaries and shot clustering. In: ICANN09 Proceedings of the 19th international conference on artificial neural networks, Limassol, Cypros, 14–17 Sept 2009 (part 2), pp. 913–922 (2009)

  9. D’Orazio, T., Leo, M.: A review of vision-based systems for soccer video analysis. Pattern Recogn. 43, 2911–2926 (2010)

    Article  Google Scholar 

  10. Pallavi, V., Mukherjee, J., Majumdar, A.K., Sural, S.: Ball detection from broadcast soccer videos using static and dynamic features. J. Vis. Commun. Image Represent. 19, 426–436 (2008)

    Article  Google Scholar 

  11. Yu, X., Leong, H., Xu, C., Tian, Q.: Trajectory-based ball detection and tracking in broadcast soccer video. IEEE Trans. Multimed. 8, 1164–1178 (2006)

    Article  Google Scholar 

  12. Ren, J., Orwell, J., Jones, G.A., Xu, M.: Tracking the soccer ball using multiple fixed cameras. Comput. Vis. Image Underst. 113, 633–642 (2009)

    Article  Google Scholar 

  13. D’Orazio, T., Guaragnella, C., Leo, M., Distante, A.: A new algorithm for ball recognition using circle hough transform and neural classier. Pattern Recogn. 37, 393–408 (2004)

    Article  Google Scholar 

  14. Mazzeo, P.L., Leo, M., Spagnolo, P., Nitti, M.: Soccer ball detection by comparing different feature extraction methodologies. Adv. Artif. Intell. Article ID 512159, p. 12 (2012)

    Google Scholar 

  15. Tuytelaars, T., Mikolajczyk, K.: Local invariant feature detectors: a survey. Found. Trends Comput. Graph. Vis. 3, 177–280 (2008)

    Article  Google Scholar 

  16. Kadir, T., Zisserman, A., Brady, J.M.: An ane invariant salient region detector. In: Proceedings of European conference on computer vision, Pague, Springer, Berlin (2004)

  17. Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaalitzky, F., Kadir, T., Gool, L.V.: A comparison of ane region detectors. Int. J. Comput. Vis. 65, 43–72 (2005)

    Article  Google Scholar 

  18. Maver, J.: Self-similarity and points of interest. IEEE Trans. Pattern Anal. Mach. Intell. 32, 1211–1226 (2010)

    Article  Google Scholar 

  19. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8, 679–698 (1986)

    Article  Google Scholar 

  20. Sivic, J., Zisserman, A.: Video Google: a text retrieval approach to object matching in videos. Proc. Int. Conf. Comput. Vis. 2, 1470–1477 (2003)

    Google Scholar 

  21. Jgou, H., Douze, M., Schmid, C.: Improving bag-of-features for large scale image search. Int. J. Comput. Vis. 87, 316–336 (2010)

    Google Scholar 

  22. Tosic, I., Frossard, P.: Dictionary learning: what is the right representation for my signal. IEEE Signal Process. Mag. 28, 27–38 (2011)

    Article  Google Scholar 

  23. Colas, F., Brazdil, P.: Comparison of svm and some older classification algorithms in text classification tasks. In: Artificial Intelligence in Theory and Practicce, vol. 217, pp. 169–178. Springer, Berlin (2006)

  24. Flach, P.A., Lachiche, N.: Naive bayesian classification of structured data. Mach. Learn. 57, 233–269 (2004)

    Article  MATH  Google Scholar 

  25. D’Orazio, T., Leo, M., Mosca, N., Spagnolo, P., Mazzeo, P.L.: A Semi-Automatic System for Ground Truth Generation of Soccer Video Sequences. In: Proceedings of AVSS 2009, pp. 559–564. Washington, DC, USA (2009)

  26. MacQueen, J.B.: Some methods for classification and analysis of multi- variate observations. In: Proceedings of 5th Berkeley symposium on mathematical statistics and probability, vol. 1, 281–297. University of California Press, Berkeley (1967)

  27. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Jasna Maver for advice and suggestions. The authors thank Liborio Capozzo and Arturo Argentieri for technical support in the setup of the devices used for data acquisition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Leo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leo, M., Mazzeo, P.L., Nitti, M. et al. Accurate ball detection in soccer images using probabilistic analysis of salient regions. Machine Vision and Applications 24, 1561–1574 (2013). https://doi.org/10.1007/s00138-013-0518-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-013-0518-9

Keywords