Monomials in Arithmetic Circuits: Complete Problems in the Counting Hierarchy | computational complexity
Skip to main content

Monomials in Arithmetic Circuits: Complete Problems in the Counting Hierarchy

  • Published:
computational complexity Aims and scope Submit manuscript

Abstract

We consider the complexity of two questions on polynomials given by arithmetic circuits: testing whether a monomial is present and counting the number of monomials. We show that these problems are complete for subclasses of the counting hierarchy which had few or no known natural complete problems before. We also study these questions for circuits computing multilinear polynomials and for univariate multiplicatively disjoint circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • E. Allender (2004).Arithmetic circuits and counting complexity classes. In Complexity of computations and proofs, volume 13 of Quad. Mat., 33–72. Dept. Math., Seconda Univ. Napoli, Caserta.

  • Allender E., Beals R., Ogihara M. (1999) The complexity of matrix rank and feasible systems of linear equations. Computational Complexity 8(2): 99–126

    Article  MATH  MathSciNet  Google Scholar 

  • Allender E., Bürgisser P., Kjeldgaard-Pedersen J., Miltersen P. B. (2009) On the Complexity of Numerical Analysis. SIAM J. Comput. 38(5): 1987–2006

    Article  MATH  Google Scholar 

  • E. Allender & K. W. Wagner (1993). Counting hierarchies: polynomial time and constant depth circuits. Current trends in theoretical computer science: essays and Tutorials 40, 469.

    Google Scholar 

  • S. Arora & B. Barak (2009). Computational complexity: a modern approach. Cambridge University Press.

  • P. Bürgisser (2000). Completeness and reduction in algebraic complexity theory, volume 7. Springer Verlag.

  • P. Bürgisser (2009). On defining integers and proving arithmetic circuit lower bounds. Computational Complexity 18(1), 81–103.

    Google Scholar 

  • Zhixiang Chen & Bin Fu (2010). Approximating Multilinear Monomial Coefficients and Maximum Multilinear Monomials in Multivariate Polynomials. In COCOA (1), 309–323.

  • Zhixiang Chen & Bin Fu (2011). The Complexity of Testing Monomials in Multivariate Polynomials. In COCOA, 1–15.

  • Richard A. DeMillo & Richard J. Lipton (1978). A Probabilistic Remark on Algebraic Program Testing. Inf. Process. Lett. 7(4), 193–195. URL http://dblp.uni-trier.de/db/journals/ipl/ipl7.html#DemilloL78.

  • H. Fournier, G. Malod & S. Mengel (2012). Monomials in arithmetic circuits: Complete problems in the counting hierarchy. In STACS, 362–373.

  • S. Garg & E. Schost (2009). Interpolation of polynomials given by straight-line programs. Theor. Comput. Sci. 410(27-29), 2659–2662.

    Google Scholar 

  • J. von zur Gathen (1987). Feasible arithmetic computations: Valiant’s hypothesis. Journal of Symbolic Computation 4(2), 137–172.

    Google Scholar 

  • F. Green (1993). On the Power of Deterministic Reductions to C = P. Theory of Computing Systems 26(2), 215–233.

  • J. Hammond (1879). Question 6001. Educ. Times 32, 179.

  • J. Heintz & C. P. Schnorr (1980). Testing polynomials which are easy to compute (Extended Abstract). In Proceedings of the twelfth annual ACM symposium on Theory of computing, STOC ’80, 262–272. ACM, New York, NY, USA. ISBN 0-89791-017-6. http://doi.acm.org/10.1145/800141.804674.

  • L. A. Hemaspaandra & M. Ogihara (2002). The complexity theory companion. Springer Verlag.

  • M. Jansen & R. Santhanam (2011). Permanent Does Not Have Succinct Polynomial Size Arithmetic Circuits of Constant Depth. In ICALP, 724–735.

  • V. Kabanets & R. Impagliazzo (2004). Derandomizing polynomial identity tests means proving circuit lower bounds. Computational Complexity 13, 1–46. ISSN 1016-3328. http://dx.doi.org/10.1007/s00037-004-0182-6.

  • N. Kayal & C. Saha (2011). On the Sum of Square Roots of Polynomials and related problems. In IEEE Conference on Computational Complexity, 292–299.

  • Adam R. Klivans & Daniel Spielman (2001). Randomness efficient identity testing of multivariate polynomials. In Proceedings of the thirty-third annual ACM symposium on Theory of computing, STOC ’01, 216–223. ACM, New York, NY, USA. ISBN 1-58113-349-9. http://doi.acm.org/10.1145/380752.380801.

  • P. Koiran & S. Perifel (2007). The complexity of two problems on arithmetic circuits. Theor. Comput. Sci. 389(1-2), 172–181.

    Google Scholar 

  • P. Koiran & S. Perifel (2011). Interpolation in Valiant’s theory. Computational Complexity 1–20.

  • I. Koutis (2008). Faster Algebraic Algorithms for Path and Packing Problems. In ICALP, 575–586.

  • J. Kwisthout, H. L. Bodlaender & L. C. van der Gaag (2011). The Complexity of Finding kth Most Probable Explanations in Probabilistic Networks. In SOFSEM, 356–367.

  • M. Mahajan, B. V. Raghavendra Rao & K. Sreenivasaiah (2012). Identity Testing, Multilinearity Testing, and Monomials in Read-Once/Twice Formulas and Branching Programs. In MFCS, 655–667.

  • M. Mahajan & V. Vinay (1997). A combinatorial algorithm for the determinant. In Proceedings of the eighth annual ACM-SIAM symposium on Discrete algorithms, 730–738. Society for Industrial and Applied Mathematics.

  • G. Malod & N. Portier (2008). Characterizing Valiant’s algebraic complexity classes. J. Complexity 24(1), 16–38.

    Google Scholar 

  • P. McKenzie & K. W. Wagner (2007). The complexity of membership problems for circuits over sets of natural numbers. Computational Complexity 16(3), 211–244.

    Google Scholar 

  • J. Mittmann, N. Saxena & P. Scheiblechner (2012). Algebraic Independence in Positive Characteristic – A p-Adic Calculus.ArXiv e-prints.

  • M. Mundhenk, J. Goldsmith, C. Lusena & E. Allender (2000). Complexity of Finite-Horizon Markov Decision Process Problems. Journal of the ACM (JACM) 47(4), 681–720.

    Google Scholar 

  • A. Schönhage (1979). On the Power of Random Access Machines. In ICALP, 520–529.

  • J. T. Schwartz (1980). Fast Probabilistic Algorithms for Verification of Polynomial Identities. J. ACM 27(4), 701–717. ISSN 0004-5411. http://doi.acm.org/10.1145/322217.322225.

  • Yann Strozecki (2013). On Enumerating Monomials and Other Combinatorial Structures by Polynomial Interpolation. Theory Comput. Syst. 53(4), 532–568.

    Google Scholar 

  • J. Torán (1988). Succinct Representations of Counting Problems. In AAECC, 415–426.

  • J. Torán (1991). Complexity Classes Defined by Counting Quantifiers. J. ACM 38(3), 753–774.

    Google Scholar 

  • L.G. Valiant (1979). Completeness classes in algebra. In Proceedings of the eleventh annual ACM symposium on Theory of computing, 249–261. ACM.

  • H. Venkateswaran (1991). Properties that Characterize LOGCFL. J. Comput. Syst. Sci. 43(2), 380–404.

    Google Scholar 

  • H. Venkateswaran & M. Tompa (1989). A New Pebble Game that Characterizes Parallel Complexity Classes. SIAM J. Comput. 18(3), 533–549.

    Google Scholar 

  • K. W. Wagner (1986). The Complexity of Combinatorial Problems with Succinct Input Representation. Acta Informatica 23(3), 325–356.

    Google Scholar 

  • R. Williams (2009). Finding paths of length k in O *(2k) time. Information Processing Letters 109(6), 315–318.

  • Richard Zippel (1979). Probabilistic algorithms for sparse polynomials. In Proceedings of the International Symposium on Symbolic and Algebraic Computation, EUROSAM ’79, 216–226. Springer-Verlag, London, UK, UK. ISBN 3-540-09519-5. http://dl.acm.org/citation.cfm?id=646670.698972.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Malod.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fournier, H., Malod, G. & Mengel, S. Monomials in Arithmetic Circuits: Complete Problems in the Counting Hierarchy. comput. complex. 24, 1–30 (2015). https://doi.org/10.1007/s00037-013-0079-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00037-013-0079-3

Keywords

Subject classification