Abstract
This paper deals with the fault detection (FD) problem for uncertain time-delayed systems with nonlinearities satisfying incremental quadratic constraints. To begin with, an observer is designed to construct the residual system for FD purpose. Because the output disturbance is involved in the residual dynamics, this residual cannot be used for FD directly. To solve this problem, the interval estimation of the residual is introduced by using the zonotope method. Based on the interval estimation of the residual, a residual-based FD scheme is proposed. Finally, a numerical simulation example is given to verify the effectiveness. Besides, some comparisons are also made and to show the advantages of proposed method.






Similar content being viewed by others
References
M. Arcak, in Circle-Criterion Observers and Their Feedback Applications: An Overview. Current Trends in Nonlinear Systems and Control: In Honor of Petar Kokotović and Turi Nicosia (Birkhäuser Boston, Boston, 2006)
M. Ashourloo, V.R. Namburi, G.V. Piqué, J. Pigott, H.J. Bergveld, A.E. Sherif, O. Trescases, Fault detection in a hybrid dickson dc–dc converter for 48-v automotive applications. IEEE Trans. Power Electron. 36(4), 4254–4268 (2021)
F. Cacace, A. Germani, C. Manes, A new approach to design interval observers for linear systems. IEEE Trans. Autom. Control 60(6), 1665–1670 (2015)
T. Chevet, T.N. Dinh, J. Marzat, Z. Wang, T. Raïssi, Zonotopic Kalman filter-based interval estimation for discrete-time linear systems with unknown inputs. IEEE Control Syst. Lett. 6, 806–811 (2022)
L. D’Alto, M. Corless, Incremental quadratic stability. Numer. Algebra Control Optim. 3(1), 175–201 (2013)
T.N. Dinh, V. Andrieu, M. Nadri, U. Serres, Continuous-discrete time observer design for lipschitz systems with sampled measurements. IEEE Trans. Autom. Control 60(3), 787–792 (2015)
X. Fan, M. Arcak, Observer design for systems with multivariable monotone nonlinearities. Syst. Control Lett. 50(4), 319–330 (2003)
J. Huang, Yu. Lei, M. Shi, Observer design for stochastic one-sided lipschitz lur’e differential inclusion system. Int. J. Comput. Math. 97(3), 624–637 (2020)
A. Jafari, J. Faiz, M.A. Jarrahi, A simple and efficient current-based method for interturn fault detection in bldc motors. IEEE Trans. Ind. Inf. 17(4), 2707–2715 (2021)
T. Jia, Y. Pan, H. Liang, H.K. Lam, Event-based adaptive fixed-time fuzzy control for active vehicle suspension systems with time-varying displacement constraint. IEEE Trans. Fuzzy Syst. 1 (2021)
T. Kharkovskaia, D. Efimov, E. Fridman, A. Polyakov, J.-P. Richard, Interval observer design and control of uncertain non-homogeneous heat equations. Automatica 111, 108595 (2020)
J. Li, Z. Wang, C.K. Ahn, Y. Shen, Fault detection for lipschitz nonlinear systems with restricted frequency-domain specifications. IEEE Trans. Syst. Man Cybern. Syst. 51, 1–11 (2020)
X. Ma, J. Huang, L. Chen, Finite-time interval observers’ design for switched systems. Circuits Syst. Signal Process. 38(11), 5304–5322 (2019)
L. Moysis, M.K. Gupta, V. Mishra, M. Marwan, C. Volos, Observer design for rectangular descriptor systems with incremental quadratic constraints and nonlinear outputs-application to secure communications. Int. J. Robust Nonlinear Control 30(18), 8139–8158 (2020)
Y. Pan, Q. Li, H. Liang, H.K. Lam, A novel mixed control approach for fuzzy systems via membership functions online learning policy. IEEE Trans. Fuzzy Syst. 1 (2021)
A.M. Pertew, H.J. Marquez, Q. Zhao, \(h_{\infty }\) observer design for lipschitz nonlinear systems. IEEE Trans. Autom. Control 51(7), 1211–1216 (2006)
M. Pourasghar, V. Puig, C. Ocampo-Martinez, Characterisation of interval-observer fault detection and isolation properties using the set-invariance approach. J. Franklin Inst. 357(3), 1853–1886 (2020)
S.-A. Raka, C. Combastel, Fault detection based on robust adaptive thresholds: a dynamic interval approach. Annu. Rev. Control. 37(1), 119–128 (2013)
M.N. Soares, Y. Mollet, M. Kinnaert, J. Gyselinck, J. Helsen, Multiphysical time- and frequency-domain fault detection and isolation technique for power-electronic converters in dfig wind turbines. IEEE Trans. Power Electron. 36(4), 3793–3802 (2021)
Q. Su, Z. Fan, L. Tong, Y. Long, J. Li, Fault detection for switched systems with all modes unstable based on interval observer. Inf. Sci. 517, 167–182 (2020)
W. Tang, Z. Wang, Y. Wang, T. Raïssi, Y. Shen, Interval estimation methods for discrete-time linear time-invariant systems. IEEE Trans. Autom. Control 64(11), 4717–4724 (2019)
W. Tang, Z. Wang, Q. Zhang, Y. Shen, Set-membership estimation for linear time-varying descriptor systems. Automatica 115, 108867 (2020)
I. Torres, J.D. Avilés, Observer-based sensor fault detection in a dark fermenter for hydrogen production. IEEE Control Syst. Lett. 5(5), 1621–1626 (2021)
M.E. Villanueva, B. Houska, On stochastic linear systems with zonotopic support sets. Automatica 111, 108652 (2020)
Y. Wang, V. Puig, G. Cembrano, Set-membership approach and Kalman observer based on zonotopes for discrete-time descriptor systems. Automatica 93, 435–443 (2018)
F. Xu, J. Tan, T. Raïssi, B. Liang, Design of optimal interval observers using set-theoretic methods for robust state estimation. Int. J. Robust Nonlinear Control 30(9), 3692–3705 (2020)
F. Xu, J. Tan, X. Wang, B. Liang, Conservatism comparison of set-based robust fault detection methods: set-theoretic uio and interval observer cases. Automatica 105, 307–313 (2019)
H. Yang, Y. Jiang, S. Yin, Adaptive fuzzy fault-tolerant control for Markov jump systems with additive and multiplicative actuator faults. IEEE Trans. Fuzzy Syst. 29(4), 772–785 (2021)
J. Zhang, C. Yuan, W. Zeng, P. Stegagno, C. Wang, Fault detection of a class of nonlinear uncertain parabolic pde systems. IEEE Control Syst. Lett. 5(4), 1459–1464 (2021)
W. Zhang, Z. Wang, T. Raïssi, T.N. Dinh, G.M. Dimirovski, Zonotope-based interval estimation for discrete-time linear switched systems. IFAC-PapersOnLine 53(2), 4707–4712 (2020)
X. Zhang, F. Zhu, S. Guo, Actuator fault detection for uncertain systems based on the combination of the interval observer and asymptotical reduced-order observer. Int. J. Control 93(11), 2653–2661 (2020)
Z. Zhang, G. Yang, Distributed fault detection and isolation for multiagent systems: an interval observer approach. IEEE Trans. Syst. Man Cybern. Syst. 50(6), 2220–2230 (2020)
Z.-H. Zhang, G.-H. Yang, Event-triggered fault detection for a class of discrete-time linear systems using interval observers. ISA Trans. 68, 160–169 (2017)
Z.-H. Zhang, G.-H. Yang, Fault detection for discrete-time uncertain lpv systems using non-minimal order filter. J. Franklin Inst. 355(2), 902–921 (2018)
Y. Zhao, W. Zhang, H. Su, J. Yang, Observer-based synchronization of chaotic systems satisfying incremental quadratic constraints and its application in secure communication. IEEE Trans. Syst. Man Cybern. Syst. 50(12), 5221–5232 (2020)
G. Zheng, D. Efimov, F.J. Bejarano, W. Perruquetti, H. Wang, Interval observer for a class of uncertain nonlinear singular systems. Automatica 71, 159–168 (2016)
G. Zheng, D. Efimov, W. Perruquetti, Design of interval observer for a class of uncertain unobservable nonlinear systems. Automatica 63, 167–174 (2016)
M. Zhou, Z. Cao, M.C. Zhou, J. Wang, Finite-frequency \(h_-/h_\infty \) fault detection for discrete-time t-s fuzzy systems with unmeasurable premise variables. IEEE Trans. Cybern. 51(6), 3017–3026 (2021)
M. Zhou, Z. Cao, M.C. Zhou, J. Wang, Z. Wang, Zonotoptic fault estimation for discrete-time lpv systems with bounded parametric uncertainty. IEEE Trans. Intell. Transp. Syst. 21(2), 690–700 (2020)
Funding
Funding is provided by National Natural Science Foundation of China (Grant Nos. 61973236, 61573256).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zhao, Y., Tang, Y. & Zhu, F. Fault Detection for Uncertain Incremental Quadratic Nonlinear System Based on Zonotopes. Circuits Syst Signal Process 41, 5444–5460 (2022). https://doi.org/10.1007/s00034-022-02049-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00034-022-02049-9