Hierarchical Principle-Based Iterative Parameter Estimation Algorithm for Dual-Frequency Signals | Circuits, Systems, and Signal Processing Skip to main content
Log in

Hierarchical Principle-Based Iterative Parameter Estimation Algorithm for Dual-Frequency Signals

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, we consider the parameter estimation problem of dual-frequency signals disturbed by stochastic noise. The signal model is a highly nonlinear function with respect to the frequencies and phases, and the gradient method cannot obtain the accurate parameter estimates. Based on the Newton search, we derive an iterative algorithm for estimating all parameters, including the unknown amplitudes, frequencies, and phases. Furthermore, by using the parameter decomposition, a hierarchical least squares and gradient-based iterative algorithm is proposed for improving the computational efficiency. A gradient-based iterative algorithm is given for comparisons. The numerical examples are provided to demonstrate the validity of the proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. B. Boashash, Estimating and interpreting the instantaneous frequency of a signal—part 1: fundamentals. Proc. IEEE 80(4), 520–538 (1992)

    Article  Google Scholar 

  2. Y. Cao, P. Li, Y. Zhang, Parallel processing algorithm for railway signal fault diagnosis data based on cloud computing. Future Gener. Comput. Syst. 88, 279–283 (2018)

    Article  Google Scholar 

  3. Y. Cao, L.C. Ma, S. Xiao et al., Standard analysis for transfer delay in CTCS-3. Chin. J. Electron. 26(5), 1057–1063 (2017)

    Article  Google Scholar 

  4. Y. Cao, G. Wei, F.J. Chen, An exact analysis of modified covariance frequency estimation algorithm based on correlation of single-tone. Signal Process. 92(11), 2785–2790 (2012)

    Article  Google Scholar 

  5. Y. Cao, Y. Wen, X. Meng, W. Xu, Performance evaluation with improved receiver design for asynchronous coordinated multipoint transmissions. Chin. J. Electron. 25(2), 372–378 (2016)

    Article  Google Scholar 

  6. G.Y. Chen, M. Gan, C.L.P. Chen et al., A regularized variable projection algorithm for separable nonlinear least squares problems. IEEE Trans. Autom. Control. 64(2), 1 (2019). https://doi.org/10.1109/TAC.2018.2838045

    Article  MathSciNet  Google Scholar 

  7. G.Y. Chen, M. Gan, F. Ding et al., Modified Gram–Schmidt method-based variable projection algorithm for separable nonlinear models. IEEE Trans. Neural Netw. Learn. Syst. 1, 1 (2018). https://doi.org/10.1109/TNNLS.2018.2884909

    Article  Google Scholar 

  8. M.Z. Chen, D.Q. Zhu, A workload balanced algorithm for task assignment and path planning of inhomogeneous autonomous underwater vehicle system. IEEE Trans. Cogn. Dev. Syst. PP, 1 (2018). https://doi.org/10.1109/TCDS.2018.2866984

    Google Scholar 

  9. J.L. Ding, Recursive and iterative least squares parameter estimation algorithms for multiple-input–output-error systems with autoregressive noise. Circuits Syst. Signal Process. 37(5), 1884–1906 (2018)

    Article  MathSciNet  Google Scholar 

  10. J.L. Ding, The hierarchical iterative identification algorithm for multi-input–output-error systems with autoregressive noise. Complexity (2017) https://doi.org/10.1155/2017/5292894 (Article ID 5292894)

  11. F. Ding, H.B. Chen, L. Xu et al., A hierarchical least squares identification algorithm for Hammerstein nonlinear systems using the key term separation. J. Frankl. Inst. 355(8), 3737–3752 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. F. Ding, L. Xu, F.E. Alsaadi, T. Hayat, Iterative parameter identification for pseudo-linear systems with ARMA noise using the filtering technique. IET Control Theory Appl. 12(7), 892–899 (2018)

    Article  MathSciNet  Google Scholar 

  13. M. Gan, C.L.P. Chen, G.Y. Chen et al., On some separated algorithms for separable nonlinear squares problems. IEEE Trans. Cybern. 48(10), 2866–2874 (2018)

    Article  Google Scholar 

  14. M. Gan, H.X. Li, H. Peng, A variable projection approach for efficient estimation of RBF-ARX model. IEEE Trans. Cybern. 45(3), 462–471 (2015)

    Article  Google Scholar 

  15. Z.W. Ge, F. Ding, L. Xu, A. Alsaedi, T. Hayat, Gradient-based iterative identification method for multivariate equation-error autoregressive moving average systems using the decomposition technique. J. Frankl. Inst. 356, 1–19 (2019). https://doi.org/10.1016/j.jfranklin.2018.12.002

    Article  MathSciNet  MATH  Google Scholar 

  16. F.Z. Geng, S.P. Qian, An optimal reproducing kernel method for linear nonlocal boundary value problems. Appl. Math. Lett. 77, 49–56 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. P.C. Gong, W.Q. Wang, F.C. Li et al., Sparsity-aware transmit beamspace design for FDA-MIMO radar. Signal Process. 144, 99–103 (2018)

    Article  Google Scholar 

  18. Y. Gu, F. Ding, J.H. Li, States based iterative parameter estimation for a state space model with multi-state delays using decomposition. Signal Process. 106, 294–300 (2015)

    Article  Google Scholar 

  19. Y. Gu, J. Liu, X. Li, State space model identification of multirate processes with time-delay using the expectation maximization. J. Frankl. Inst. 356, 1–17 (2019). https://doi.org/10.1016/j.jfranklin.2018.08.030

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Hou, Amplitude and frequency estimator of a sinusoid. IEEE Trans. Autom. Control 50(6), 855–858 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Hou, Estimation of sinusoidal frequencies and amplitudes using adaptive identifier and observer. IEEE Trans. Autom. Control 52(3), 493–499 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Hou, Parameter identification of sinusoids. IEEE Trans. Autom. Control 57(2), 467–472 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Y.B. Hu, Q. Zhou, H. Yu, Z. Zhou, F. Ding, Two-stage generalized projection identification algorithms for controlled autoregressive systems. Circuits Syst. Signal Process. 38, 1–17 (2019). https://doi.org/10.1007/s00034-018-0996-0

    Article  Google Scholar 

  24. X.Y. Li, B.Y. Wu, A new reproducing kernel collocation method for nonlocal fractional boundary value problems with non-smooth solutions. Appl. Math. Lett. 86, 194–199 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. F.B. Li, L.G. Wu, P. Shi, C.C. Lim, State estimation and sliding mode control for semi-Markovian jump systems with mismatched uncertainties. Automatica 51, 385–393 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. J.H. Li, W. Zheng, J.P. Gu, L. Hua, A recursive identification algorithm for Wiener nonlinear systems with linear state-space subsystem. Circuits Syst. Signal Process. 37(6), 2374–2393 (2018)

    Article  MathSciNet  Google Scholar 

  27. X. Li, D.Q. Zhu, An adaptive SOM neural network method for distributed formation control of a group of AUVs. IEEE Trans. Ind. Electron. 65(10), 8260–8270 (2018)

    Google Scholar 

  28. Q.Y. Liu, F. Ding, Auxiliary model-based recursive generalized least squares algorithm for multivariate output-error autoregressive systems using the data filtering. Circuits Syst. Signal Process. 38, 1–21 (2019). https://doi.org/10.1007/s00034-018-0871-z

    Article  Google Scholar 

  29. S.Y. Liu, L. Xu, F. Ding, Iterative parameter estimation algorithms for dual-frequency signal models. Algorithms 10(4), 1–13 (2017). https://doi.org/10.3390/a10040118

    Article  MathSciNet  MATH  Google Scholar 

  30. P.P. Liu, S.G. Zhang, Newton’s method for solving a class of nonlinear matrix equations. J. Comput. Appl. Math. 255, 254–267 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. P. Ma, F. Ding, Q.M. Zhu, Decomposition-based recursive least squares identification methods for multivariate pseudolinear systems using the multi-innovation. Int. J. Syst. Sci. 49(5), 920–928 (2018)

    Article  Google Scholar 

  32. M. Nafar, G.B. Gharehpetian, T. Niknam, Using modified fuzzy particle swarm optimization algorithm for parameter estimation of surge arresters model. Int. J. Innov. Comput. Inf. Control 8(1B), 567–581 (2012)

    Google Scholar 

  33. J. Pan, W. Li, H.P. Zhang, Control algorithms of magnetic suspension systems based on the improved double exponential reaching law of sliding mode control. Int. J. Control Autom. Syst. 16(6), 2878–2887 (2018)

    Article  Google Scholar 

  34. J. Pan, H. Ma, X. Jiang, et al., Adaptive gradient-based iterative algorithm for multivariate controlled autoregressive moving average systems using the data filtering technique. Complexity (2018). https://doi.org/10.1155/2018/9598307 (Article ID 9598307)

  35. H. Ramos, M.T.T. Monteiro, A new approach based on the Newton’s method to solve systems of nonlinear equations. J. Comput. Appl. Math. 318, 3–13 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Z.H. Rao, C.Y. Zeng, M.H. Wu et al., Research on a handwritten character recognition algorithm based on an extended nonlinear kernel residual network. KSII Trans. Internet Inf. Syst. 12(1), 413–435 (2018)

    Google Scholar 

  37. P. Stoica, H.B. Li, J. Li, Amplitude estimation of sinusoidal signals: survey, new results, and an application. IEEE Trans. Signal Process. 48(2), 338–352 (2000)

    Article  MATH  Google Scholar 

  38. L.J. Wan, F. Ding, Decomposition-based gradient iterative identification algorithms for multivariable systems using the multi-innovation theory. Circuits Syst. Signal Process. 38, 1–20 (2019). https://doi.org/10.1007/s00034-018-1014-2

    Article  Google Scholar 

  39. Y. Wang, Y. Si, B. Huang, S.X. Ding, Survey on the theoretical research and engineering applications of multivariate statistics process monitoring algorithms: 2008–2017. Can. J. Chem. Eng. 96(10), 2073–2085 (2018)

    Article  Google Scholar 

  40. L. Xu, Application of the Newton iteration algorithm to the parameter estimation for dynamical systems. J. Comput. Appl. Math. 288, 33–43 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. L. Xu, The parameter estimation algorithms based on the dynamical response measurement data. Adv. Mech. Eng. 9(11), 1–12 (2017). https://doi.org/10.1177/1687814017730003

    Google Scholar 

  42. L. Xu, F. Ding, Iterative parameter estimation for signal models based on measured data. Circuits Syst. Signal Process. 37(7), 3046–3069 (2018)

    Article  MathSciNet  Google Scholar 

  43. L. Xu, F. Ding, Parameter estimation for control systems based on impulse responses. Int. J. Control Autom. Syst. 15(6), 2471–2479 (2017)

    Article  Google Scholar 

  44. L. Xu, F. Ding, Y. Gu et al., A multi-innovation state and parameter estimation algorithm for a state space system with d-step state-delay. Signal Process. 140, 97–103 (2017)

    Article  Google Scholar 

  45. H. Xu, F. Ding, E.F. Yang, Modeling a nonlinear process using the exponential autoregressive time series model. Nonlinear Dyn. (2019). https://doi.org/10.1007/s11071-018-4677-0

  46. G.H. Xu, Y. Shekofteh, A. Akgul et al., A new chaotic system with a self-excited attractor: entropy measurement, signal encryption, and parameter estimation. Entropy 20(2), 1–23 (2018). https://doi.org/10.3390/e20020086

    Google Scholar 

  47. L. Xu, W.L. Xiong et al., Hierarchical parameter estimation for the frequency response based on the dynamical window data. Int. J. Control Autom. Syst. 16(4), 1756–1764 (2018)

    Article  Google Scholar 

  48. C. Yang, G. Wei, A noniterative frequency estimator with rational combination of three spectrum lines. IEEE Trans. Signal Process. 59(10), 5065–5070 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  49. C. Yin, S.S. Wu et al., Design and stability analysis of multivariate extremum seeking with Newton method. J. Frankl. Inst. 355(4), 1559–1578 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  50. Q.G. Zhang, The Rife frequency estimation algorithm based on real-time FFT. Signal Process. 25(6), 1002–1004 (2009)

    Google Scholar 

  51. Y.Z. Zhang, Y. Cao, Y.H. Wen, L. Liang, F. Zou, Optimization of information interaction protocols in cooperative vehicle-infrastructure systems. Chin. J. Electron. 27(2), 439–444 (2018)

    Article  Google Scholar 

  52. X. Zhang, F. Ding, F.E. Alsaadi, T. Hayat, Recursive parameter identification of the dynamical models for bilinear state space systems. Nonlinear Dyn. 89(4), 2415–2429 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  53. X. Zhang, F. Ding, L. Xu et al., State filtering-based least squares parameter estimation for bilinear systems using the hierarchical identification principle. IET Control Theory Appl. 12(12), 1704–1713 (2018)

    Article  MathSciNet  Google Scholar 

  54. X. Zhang, L. Xu, F. Ding et al., Combined state and parameter estimation for a bilinear state space system with moving average noise. J. Frankl. Inst. 355(6), 3079–3103 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  55. W.H. Zhang, L. Xue, X. Jiang, Global stabilization for a class of stochastic nonlinear systems with SISS-like conditions and time delay. Int. J. Robust Nonlinear Control 28(13), 3909–3926 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  56. N. Zhao, R. Liu, Y. Chen et al., Contract design for relay incentive mechanism under dual asymmetric information in cooperative networks. Wirel. Netw. 24(8), 3029–3044 (2018)

    Article  Google Scholar 

  57. D. Zhao, Y. Wang, Y. Li, S.X. Ding, H-infinity fault estimation for two-dimensional linear discrete time-varying systems based on Krein space method. IEEE Trans. Syst. Man Cybern. Syst. 48(12), 2070–2079 (2018)

    Article  Google Scholar 

  58. Z.P. Zhou, X.F. Liu, State and fault estimation of sandwich systems with hysteresis. Int. J. Robust Nonlinear Control 28(13), 3974–3986 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61873111) and the 111 Project (B12018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Ding.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Ding, F., Xu, L. et al. Hierarchical Principle-Based Iterative Parameter Estimation Algorithm for Dual-Frequency Signals. Circuits Syst Signal Process 38, 3251–3268 (2019). https://doi.org/10.1007/s00034-018-1015-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-1015-1

Keywords

Navigation