Abstract
This paper considers the parameter estimation problems for a class of multivariable equation-error systems with colored noises. By using the decomposition technique, a multivariable system is transformed into several subsystems to reduce the computational burden, and a maximum likelihood-based recursive least-squares identification algorithm is developed for estimating the parameters of each subsystem. As a comparison, a multivariable recursive extended least-squares algorithm is presented. The analysis indicates that the proposed algorithm has lower computational complexity than the multivariable recursive extended least-squares algorithm, and the numerical simulation results demonstrate that the proposed method is effective.




Similar content being viewed by others
References
Y. Cao, P. Li, Y. Zhang, Parallel processing algorithm for railway signal fault diagnosis data based on cloud computing. Future Gener. Comput. Syst. 88, 279–283 (2018)
Y. Cao, L.C. Ma, S. Xiao et al., Standard analysis for transfer delay in CTCS-3. Chin. J. Electron. 26(5), 1057–1063 (2017)
F.Y. Chen, F. Ding, A. Alsaedi, T. Hayat, Data filtering based multi-innovation extended gradient method for controlled autoregressive autoregressive moving average systems using the maximum likelihood principle. Math. Comput. Simulat. 132, 53–67 (2017)
H.B. Chen, Y.S. Xiao, F. Ding, Hierarchical gradient parameter estimation algorithm for Hammerstein nonlinear systems using the key term separation principle. Appl. Math. Comput. 247, 1202–1210 (2014)
K. Cohen, A. Nedic, R. Srikant, On projected stochastic gradient descent algorithm with weighted averaging for least squares regression. IEEE Trans. Autom. Control 62(11), 5974–5981 (2017)
F. Ding, Decomposition based fast least squares algorithm for output error systems. Signal Process. 93(5), 1235–1242 (2013)
F. Ding, Two-stage least squares based iterative estimation algorithm for CARARMA system modeling. Appl. Math. Model. 37(7), 4798–4808 (2013)
J.L. Ding, Recursive and iterative least squares parameter estimation algorithms for multiple-input-output-error systems with autoregressive noise. Circuits Syst. Signal Process. 37(5), 1884–1906 (2018)
J.L. Ding, The hierarchical iterative identification algorithm for multi-input-output-error systems with autoregressive noise. Complexity (2017). https://doi.org/10.1155/2017/5292894
F. Ding, H.B. Chen, L. Xu, J.Y. Dai, Q.S. Li, T. Hayat, A hierarchical least squares identification algorithm for Hammerstein nonlinear systems using the key term separation. J. Franklin Inst. 355(8), 3737–3752 (2018)
F. Ding, X.G. Liu, J. Chu, Gradient-based and least-squares-based iterative algorithms for Hammerstein systems using the hierarchical identification principle. IET Control Theory Appl. 7(2), 176–184 (2013)
F. Ding, D.D. Meng, J.Y. Dai, Q.S. Li, A. Alsaedi, T. Hayat, Least squares based iterative parameter identification for stochastic dynamical systems with ARMA noise using the model equivalence. Int. J. Control Autom. Syst. 16(2), 630–639 (2018)
F. Ding, F.F. Wang, L. Xu, M.H. Wu, Decomposition based least squares iterative identification algorithm for multivariate pseudo-linear ARMA systems using the data filtering. J. Franklin Inst. 354(3), 1321–1339 (2017)
F. Ding, L. Xu, F.E. Alsaadi, T. Hayat, Iterative parameter identification for pseudo-linear systems with ARMA noise using the filtering technique. IET Control Theory Appl. 12(7), 892–899 (2018)
F. Ding, L. Xu, Q.M. Zhu, Performance analysis of the generalised projection identification for time-varying systems. IET Control Theory Appl. 10(18), 2506–2514 (2016)
E. Eweda, Stabilization of high-order stochastic gradient adaptive filtering algorithms. IEEE Trans. Signal Process. 65(15), 3948–3959 (2017)
M. Gan, C.L.P. Chen, G.Y. Chen, L. Chen, On some separated algorithms for separable nonlinear squares problems. IEEE Trans. Cybern. (2018). https://doi.org/10.1109/TCYB.2017.2751558
M. Gan, H.X. Li, H. Peng, A variable projection approach for efficient estimation of RBF-ARX model. IEEE Trans. Cybern. 45(3), 462–471 (2015)
P.C. Gong, W.Q. Wang, F.C. Li, H. Cheung, Sparsity-aware transmit beamspace design for FDA-MIMO radar. Signal Process. 144, 99–103 (2018)
H.L. Gao, C.C. Yin, The perturbed sparre Andersen model with a threshold dividend strategy. J. Comput. Appl. Math. 220(1–2), 394–408 (2008)
P. Li, R. Dargaville, Y. Cao et al., Storage aided system property enhancing and hybrid robust smoothing for large-scale PV systems. IEEE Trans. Smart Grid 8(6), 2871–2879 (2017)
P. Li, R.X. Li, Y. Cao, G. Xie, Multi-objective sizing optimization for island microgrids using triangular aggregation model and Levy-Harmony algorithm. IEEE Trans. Ind. Inf. (2018). https://doi.org/10.1109/TII.2017.2778079
M.H. Li, X.M. Liu, The least squares based iterative algorithms for parameter estimation of a bilinear system with autoregressive noise using the data filtering technique. Signal Process. 147, 23–34 (2018)
M.H. Li, X.M. Liu, Auxiliary model based least squares iterative algorithms for parameter estimation of bilinear systems using interval-varying measurements. IEEE Access 6, 21518–21529 (2018)
F. Liu, A note on Marcinkiewicz integrals associated to surfaces of revolution. J. Aust. Math. Soc. 104(3), 380–402 (2018)
F. Liu, Continuity and approximate differentiability of multisublinear fractional maximal functions. Math. Inequal. Appl. 21(1), 25–40 (2018)
F. Liu, On the Triebel–Lizorkin space boundedness of Marcinkiewicz integrals along compound surfaces. Math. Inequal. Appl. 20(2), 515–535 (2017)
F. Liu, H.X. Wu, Singular integrals related to homogeneous mappings in Triebel–Lizorkin spaces. J. Math. Inequal. 11(4), 1075–1097 (2017)
F. Liu, H.X. Wu, Regularity of discrete multisublinear fractional maximal functions. Sci. China Math. 60(8), 1461–1476 (2017)
F. Liu, H.X. Wu, On the regularity of maximal operators supported by submanifolds. J. Math. Anal. Appl. 453(1), 144–158 (2017)
F. Liu, Q.Y. Xue, K. Yabuta, Rough maximal singular integral and maximal operators supported by subvarieties on Triebel–Lizorkin spaces. Nonlinear Anal. 171, 41–72 (2018)
P. Ma, F. Ding, Q.M. Zhu, Decomposition-based recursive least squares identification methods for multivariate pseudolinear systems using the multi-innovation. Int. J. Syst. Sci. 49(5), 920–928 (2018)
J.X. Ma, W.L. Xiong, J. Chen et al., Hierarchical identification for multivariate Hammerstein systems by using the modified Kalman filter. IET Control Theory Appl. 11(6), 857–869 (2017)
Y.W. Mao, F. Ding, A novel parameter separation based identification algorithm for Hammerstein systems. Appl. Math. Lett. 60, 21–27 (2016)
J. Pan, H. Ma, X. Jiang, et al., Adaptive gradient-based iterative algorithm for multivariate controlled autoregressive moving average systems using the data filtering technique. Complexity 2018, 9598307. https://doi.org/10.1155/2018/9598307
Z.H. Rao, C.Y. Zeng, M.H. Wu et al., Research on a handwritten character recognition algorithm based on an extended nonlinear kernel residual network. KSII Trans. Int. Inf. Syst. 12(1), 413–435 (2018)
D.Q. Wang, Hierarchical parameter estimation for a class of MIMO Hammerstein systems based on the reframed models. Appl. Math. Lett. 57, 13–19 (2016)
Y.J. Wang, F. Ding, Novel data filtering based parameter identification for multiple-input multiple-output systems using the auxiliary model. Automatica 71, 308–313 (2016)
Y.J. Wang, F. Ding, A filtering based multi-innovation gradient estimation algorithm and performance analysis for nonlinear dynamical systems. IMA J. Appl. Math. 82(6), 1171–1191 (2017)
Y.J. Wang, F. Ding, L. Xu, Some new results of designing an IIR filter with colored noise for signal processing. Digital Signal Process. 72, 44–58 (2018)
D.Q. Wang, Z. Zhang, J.Y. Yuan, Maximum likelihood estimation method for dual-rate Hammerstein systems. Int. J. Control Autom. Syst. 15(2), 698–705 (2017)
D.Q. Wang, Y.P. Gao, Recursive maximum likelihood identification method for a multivarable controlled autoregressive moving average system. IMA J. Math. Control Inf. 33(4), 1015–1031 (2016)
L. Xu, The parameter estimation algorithms based on the dynamical response measurement data. Adv. Mech. Eng. 9(11), 1–12 (2017). https://doi.org/10.1177/1687814017730003
L. Xu, F. Ding, Recursive least squares and multi-innovation stochastic gradient parameter estimation methods for signal modeling. Circuits Syst. Signal Process. 36(4), 1735–1753 (2017)
L. Xu, F. Ding, Iterative parameter estimation for signal models based on measured data. Circuits Syst. Signal Process. 37(7), 3046–3069 (2018)
L. Xu, F. Ding, Parameter estimation algorithms for dynamical response signals based on the multi-innovation theory and the hierarchical principle. IET Signal Process. 11(2), 228–237 (2017)
L. Xu, F. Ding, Parameter estimation for control systems based on impulse responses. Int. J. Control Autom. Syst. 15(6), 2471–2479 (2017)
L. Xu, F. Ding, Y. Gu, A. Alsaedi, T. Hayat, A multi-innovation state and parameter estimation algorithm for a state space system with d-step state-delay. Signal Process. 140, 97–103 (2017)
G.H. Xu, Y. Shekofteh, A. Akgul, C.B. Li, S. Panahi, A new chaotic system with a self-excited attractor: entropy measurement, signal encryption, and parameter estimation. Entropy (2018). https://doi.org/10.3390/e20020086
L. Xu, W.L. Xiong, A. Alsaedi, T. Hayat, Hierarchical parameter estimation for the frequency response based on the dynamical window data. Int. J. Control Autom. Syst. (2018). https://doi.org/10.1007/s12555-017-0482-7
C.C. Yin, C.W. Wang, The perturbed compound Poisson risk process with investment and debit interest. Methodol. Comput. Appl. Probab. 12(3), 391–413 (2010)
C.C. Yin, Y.Z. Wen, Exit problems for jump processes with applications to dividend problems. J. Comput. Appl. Math. 245, 30–52 (2013)
C.C. Yin, Y.Z. Wen, Optimal dividend problem with a terminal value for spectrally positive Levy processes. Insur. Math. Econ. 53(3), 769–773 (2013)
C.C. Yin, K.C. Yuen, Optimality of the threshold dividend strategy for the compound Poisson model. Stat. Probab. Lett. 81(12), 1841–1846 (2011)
C.C. Yin, J.S. Zhao, Nonexponential asymptotics for the solutions of renewal equations, with applications. J. Appl. Probab. 43(3), 815–824 (2006)
P.C. Young, Refined instrumental variable estimation: maximum likelihood optimization of a unified Box–Jenkins model. Automatica 52, 35–46 (2015)
Y.Z. Zhang, Y. Cao, Y.H. Wen, L. Liang, F. Zou, Optimization of information interaction protocols in cooperative vehicle-infrastructure systems. Chin. J. Electron. 27(2), 439–444 (2018)
X. Zhang, F. Ding, F.E. Alsaadi, T. Hayat, Recursive parameter identification of the dynamical models for bilinear state space systems. Nonlinear Dyn. 89(4), 2415–2429 (2017)
X. Zhang, F. Ding, L. Xu, E.F. Yang, State filtering-based least squares parameter estimation for bilinear systems using the hierarchical identification principle. IET Control Theory Appl. 12(12), 1704–1713 (2018)
X. Zhang, L. Xu, F. Ding, T. Hayat, Combined state and parameter estimation for a bilinear state space system with moving average noise. J. Franklin Inst. 355(6), 3079–3103 (2018)
N. Zhao, R. Liu, Y. Chen, M. Wu et al., Contract design for relay incentive mechanism under dual asymmetric information in cooperative networks. Wireless Netw. (2018). https://doi.org/10.1007/s11276-017-1518-x
D.Q. Zhu, X. Cao, B. Sun, C.M. Luo, Biologically inspired self-organizing map applied to task assignment and path planning of an AUV system. IEEE Trans. Cognit. Dev. Syst. 10(2), 304–313 (2018)
Acknowledgements
The authors are grateful to Professor Feng Ding at the Jiangnan University for his helpful suggestions and the main idea of this work comes from him and his books. This work was supported by the National Natural Science Foundation of China (No. 61273194) and the 111 Project (B12018).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Xia, H., Ji, Y., Xu, L. et al. Maximum Likelihood-Based Recursive Least-Squares Algorithm for Multivariable Systems with Colored Noises Using the Decomposition Technique. Circuits Syst Signal Process 38, 986–1004 (2019). https://doi.org/10.1007/s00034-018-0904-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00034-018-0904-7