A Novel $$L_2-L_\infty $$ Filtering Strategy for Two Kinds of Network-Based Linear Time-Invariant Systems | Circuits, Systems, and Signal Processing Skip to main content
Log in

A Novel \(L_2-L_\infty \) Filtering Strategy for Two Kinds of Network-Based Linear Time-Invariant Systems

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper proposes a novel filtering strategy characterized by an impulsive differential system. It provides an alternative solution to the problem of \(L_2-L_\infty \) filtering for two kinds of network-based linear time-invariant systems. The presented method highlights two features, “plug and play” and “always feasible,” because it is simple and does not need to solve any complex constrained optimization problems. For measurable and unmeasurable system states, two different filter frameworks are presented, respectively. The proposed filtering strategy could guarantee the asymptotic stability of the filtering error system, while ensuring an \(L_2-L_\infty \) performance. At the same time, the relationship between the \(L_2-L_\infty \) disturbance attenuation level bound \(\gamma \) and the maximum time-delay upper limit \(\tau _\mathrm{m}\) is given. Finally, three illustrative examples are given to demonstrate the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.D.S. Aliyu, E. Boukas, Kalman filtering for affine nonlinear descriptor systems. Circ. Syst. Signal Process. 30(1), 125–142 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Bemporad, M. Heemels, M. Johansson, Networked Control Systems (Springer, Berlin, 2010)

    Book  MATH  Google Scholar 

  3. R.S. Bucy, Linear and nonlinear filtering. Proc. IEEE 58(6), 854–864 (1970)

    Article  MathSciNet  Google Scholar 

  4. F.N. Chowdhury, Kalman filter with hypothesis testing: a tool for estimating uncertain parameters. Circuits Syst. Signal Process. 15(3), 291–311 (1996)

    Article  MATH  Google Scholar 

  5. J.L. Crassidis, J.L. Junkins, Optimal Estimation of Dynamic Systems (Chapman & Hall/CRC, Washington, 2004)

    Book  MATH  Google Scholar 

  6. Y. Chen, A. Xue, S. Zhou, New delay-dependent \(L_2-L_{\infty }\) filter design for stochastic time-delay systems. Signal Process. 89(6), 974–980 (2009)

    Article  MATH  Google Scholar 

  7. D. Du, B. Qi, M. Fei, C. Peng, Multiple event-triggered \(H_2\)/\(H_{\infty }\) filtering for hybrid wired–wireless networked systems with random network-induced delays. Inf. Sci. 325, 393–408 (2015)

    Article  MathSciNet  Google Scholar 

  8. V. Dragan, A.M. Stoica, Optimal \(H_2\) filtering for a class of linear stochastic systems with sampling. Automatica 48(10), 2494–2501 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. H. Gao, T. Chen, \(H_{\infty }\) estimation for uncertain systems with limited communication capacity. IEEE Trans. Autom. Control 52(11), 2070–2084 (2007)

    Article  MathSciNet  Google Scholar 

  10. H. Gao, C. Wang, Robust energy-to-peak filtering with improved LMI representations. IEE Proc. Vis. Image Signal Process. 150(2), 82–89 (2003)

    Article  Google Scholar 

  11. K. Han, J. Feng, X. Chang, Reduced-order partially mode-dependent energy-to-peak filter design for discrete-time Markov jump systems subject to quantizer faults and state-dependent noises. Circuits Syst. Signal Process. 34(1), 77–103 (2014)

    Article  MathSciNet  Google Scholar 

  12. C.K. Keyes, J.M. Sangroniz, J.E. Obert, Network-based remote diagnostic facility. U.S. Patent 6516427 (2003)

  13. H.R. Karimi, Robust \(H_{\infty }\) filter design for uncertain linear systems over network with network-induced delays and output quantization. Model. Identif. Control 30(1), 27–37 (2009)

    Article  Google Scholar 

  14. J. Lee, E-manufacturing fundamental, tools, and transformation. Robot. Comput. Integr. Manuf. 19(6), 501–507 (2003)

    Article  Google Scholar 

  15. L. Li, F. Li, Z. Zhang, J. Xu, On mode-dependent \(H_{\infty }\) filtering for network-based discrete-time systems. Signal Process. 93(4), 634–640 (2013)

    Article  Google Scholar 

  16. X.Y. Li, S.L. Sun, filtering for networked linear systems with multiple packet dropouts and random delays. Dig. Signal Process. 46, 59–67 (2015)

    Article  MathSciNet  Google Scholar 

  17. X. Meng, H. Gao, S. Mou, A new parameter-dependent approach to robust energy-to-peak filter design. Circuits Syst. Signal Process. 26(4), 451–471 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Qiu, G. Feng, J. Yang, New results on robust energy-to-peak filtering for discrete-time switched polytopic linear systems with time-varying delay. IET Control Theory Appl. 2(9), 795–806 (2008)

    Article  MathSciNet  Google Scholar 

  19. H. Rezaei, R.M. Esfanjani, M.H. Sedaaghi, Improved Kalman filtering for systems with randomly delayed and lost measurements. Circuits Syst. Signal Process. 33(7), 2217–2236 (2014)

    Article  MathSciNet  Google Scholar 

  20. M.P. Reinaldo, L.D.P. Pedro, Robust filtering with guaranteed energy-to-peak performance: an LMI approach. Automatica 36(6), 851–858 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. H.W. Sorenson, Kalman Filtering: Theory and Application (IEEE Press, Washington, 1985)

    Google Scholar 

  22. L. Schenato, Optimal estimation in networked control systems subject to random delay and packet loss, in IEEE Conference on Decision and Control (2006), pp. 1311–1317

  23. M. Sahebsara, T. Chen, S.L. Shah, Optimal \(H_2\) filtering in networked control systems with multiple packet dropout. IEEE Trans. Autom. Control 52(8), 1508–1513 (2007)

    Article  MathSciNet  Google Scholar 

  24. S. Selvi, R. Sakthivel, K. Mathiyalagan, Robust \(L_2-L_{\infty }\) control for uncertain systems with additive delay components. Circuits Syst. Signal Process. 34(9), 2819–2838 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. S. Sun, L. Xie, W. Xiao, Y.C. Soh, Optimal linear estimation for systems with multiple packet dropouts. Automatica 44(5), 1333–1342 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. X. Song, H. Zhang, H. Liu, \(L_2-L_{\infty }\) filtering design for piecewise discrete-time linear systems. Circuits Syst. Signal Process. 28(6), 883–898 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. F.Y. Wang, D. Liu, Networked Control Systems (Springer, Berlin, 2008)

    Book  Google Scholar 

  28. Y.L. Wang, Q.-L. Han, Network-based fault detection filter and controller coordinated design for unmanned surface vehicles in network environments. IEEE Trans. Ind. Inf. 12(5), 1753–1765 (2016)

  29. D. Yue, Q.-L. Han, J. Lam, Network-based robust \(H_{\infty }\) control of systems with uncertainty. Automatica 41(6), 999–1007 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. D. Yue, Q.-L. Han, Network-based robust filtering for uncertain linear systems. IEEE Trans. Signal Process. 54(11), 4293–4301 (2006)

    Article  Google Scholar 

  31. S. Yin, L. Yu, W.A. Zhang, A switched system approach to networked \(H_{\infty }\) filtering with packet losses. Circuits Syst. Signal Process. 30(6), 1341–1354 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. G. Zong, L. Hou, Y. Wu, Robust \(L_2-L_{\infty }\) guaranteed cost filtering for uncertain discrete-time switched system with mode-dependent time-varying delays. Circuits Syst. Signal Process. 30(1), 17–33 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. H. Zhang, Y. Shi, J. Wang, On energy-to-peak filtering for nonuniformly sampled nonlinear systems: a Markovian jump system approach. IEEE Trans. Fuzzy Syst. 22(1), 212–222 (2014)

    Article  Google Scholar 

  34. H. Zhang, Y. Shi, M.A. Saadat, Robust energy-to-peak filtering for networked systems with time-varying delays and randomly missing data. IET Control Theory Appl. 4(12), 2921–2936 (2010)

    Article  MathSciNet  Google Scholar 

  35. Y. Zhou, J. Li, Energy-to-peak filtering for singular systems: the discrete-time case. IET Control Theory Appl. 2(9), 773–781 (2008)

    Article  MathSciNet  Google Scholar 

  36. Z. Zhang, Z. Zhang, S. Yang, Robust reduced-order \(L_{2}-L_{\infty }\) filtering for network-based discrete-time linear systems. Signal Process. 109, 110–118 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and the anonymous reviewers for their helpful suggestions to improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunli Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, B., Ma, J. & Li, S. A Novel \(L_2-L_\infty \) Filtering Strategy for Two Kinds of Network-Based Linear Time-Invariant Systems. Circuits Syst Signal Process 36, 3098–3113 (2017). https://doi.org/10.1007/s00034-016-0460-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-016-0460-y

Keywords

Navigation