Abstract
This paper presents the analysis for allocating the system poles and hence controlling the system stability for KHN and Sallen–Key fractional order filters. The stability analysis and stability contours for two different fractional order transfer functions with two different fractional order elements are presented. The effect of the transfer function parameters on the singularities of the system is demonstrated where the number of poles becomes dependent on the transfer function parameters as well as the fractional orders. Numerical, circuit simulation, and experimental work are used in the design to test the proposed stability contours.

















Similar content being viewed by others
References
A. Acharya, S. Das, I. Pan, S. Das, Extending the concept of analog butterworth filter for fractional order systems. Signal Process. 94, 409–420 (2014)
R.P. Agarwal, D. O’Regan, Ordinary and Partial Differential Equations: With Special Functions, Fourier Series, and Boundary Value Problems (Springer, New York, 2009)
R. Alikhani, F. Bahrami, Global solutions for nonlinear fuzzy fractional integral and integrodifferential equations. Commun. Nonlinear Sci. Numer. Simul. 18(8), 2007–2017 (2013)
H. Bateman, A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher Transcendental Functions, vol. 2 (McGraw-Hill, New York, 1953)
B. Bhattacharyya, W.B. Mikhael, A. Antoniou, Design of rc-active networks using generalized-immittance converters. J. Frankl. Inst. 297(1), 45–58 (1974). doi:10.1016/0016-0032(74). 90137–9
R. Caponetto, Fractional Order Systems: Modeling and Control Applications, vol. 72 (World Scientific Publishing Company, Singapore, 2010)
S. Das, Application of generalized fractional calculus in electrical circuit analysis, in Functional Fractional Calculus for System Identification and Controls, (Springer, Berlin, 2008), pp. 157–180
A.S. Elwakil, Fractional-order circuits and systems: an emerging interdisciplinary research area. IEEE Circuits Syst. Mag. 10(4), 40–50 (2010)
P. Fanghella, Fractional-order control of a micrometric linear axis. J. Control Sci. Eng. (2013)
R.H. Fox, J.W. Milnor et al., Singularities of 2-spheres in 4-space and cobordism of knots. Osaka J. Math. 3(2), 257–267 (1966)
T.J. Freeborn, B. Maundy, A.S. Elwakil, Field programmable analogue array implementation of fractional step filters. IET Circuits Devices Syst. 4(6), 514–524 (2010)
T.J. Freeborn, B. Maundy, A.S. Elwakil, Fractional step analog filter design, in Analog/RF and Mixed-Signal Circuit Systematic Design, ed. by M. Fakhfakh, E. Tlelo-Cuautle, R. Castro-Lopez. Lecture Notes in Electrical Engineering, vol. 233 (Springer, Berlin, 2013), pp. 243–267
L. Galeone, R. Garrappa, Explicit methods for fractional differential equations and their stability properties. J. Comput. Appl. Math. 228(2), 548–560 (2009)
L.T. Grujić, Non-lyapunov stability analysis of large-scale systems on time-varying sets. Int. J. Control 21(3), 401–415 (1975). doi:10.1080/00207177508921999
L.T. Grujić, Practical stability with settling time on composite systems. Automatika (Yug), Ljubljana pp. 1–11 (1975)
H.J. Haubold, A.M. Mathai, R.K. Saxena, Mittag-leffler functions and their applications. J. Appl. Math. 235(5), 1311–1316 (2011)
A. Hegazi, E. Ahmed, A. Matouk, On Chaos control and synchronization of the commensurate fractional order liu system. Commun. Nonlinear Sci. Numer. Simul. 18(5), 1193–1202 (2013)
M.S. Hirano, Y. Miura, Y.F. Saito, K. Saito, Simulation of fractal immittance by analog circuits: an approach to the optimized circuits. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 82(8), 1627–1635 (1999)
T. Kaczorek, New stability tests of positive standard and fractional linear systems. Circuits Syst. 2(4), 261–268 (2011)
M.P. Lazarevi, Finite time stability analysis of pd fractional control of robotic time-delay systems. Mech. Res. Commun. 33(2), 269–279 (2006)
M.P. Lazarevi, A.M. Spasi, Finite-time stability analysis of fractional order time-delay systems: Gronwalls approach. Math. Comput. Modelling 49(34), 475–481 (2009)
K. Li, Delay-dependent stability analysis for impulsive BAM neural networks with time-varying delays. Comput. Math. Appl. 56(8), 2088–2099 (2008)
H. Li, Y. Luo, Y. Chen, A fractional order proportional and derivative (FOPD) motion controller: tuning rule and experiments. IEEE Trans. Control Syst. Technol. 18(2), 516–520 (2010)
K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (Wiley, New York, 1993)
G. Mittag-Leffler, Sur la nouvelle fonction \(E_{\alpha } (x)\). CR Acad. Sci. Paris 137, 554–558 (1903)
K.B. Oldham, J. Spanier, The Fractional Calculus, vol. 1047 (Academic Press, New York, 1974)
G. Peng, Synchronization of fractional order chaotic systems. Phys. Lett. A 363(56), 426–432 (2007)
I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications, vol. 198. Access Online via Elsevier (1998)
A.G. Radwan, Stability analysis of the fractional-order \(RL_{\beta }C_{\alpha }\) circuit. J. Fract. Calc. Appl. 3(1), 1–15 (2012)
A.G. Radwan, A.S. Elwakil, A.M. Soliman, Fractional-order sinusoidal oscillators: design procedure and practical examples. IEEE Trans. Circuits Syst. I 55(7), 2051–2063 (2008)
A.G. Radwan, A.S. Elwakil, A.M. Soliman, On the generalization of second-order filters to the fractional-order domain. J. Circuits Syst. Comput. 18(02), 361–386 (2009)
A.G. Radwan, K. Moaddy, S. Momani, Stability and non-standard finite difference method of the generalized chuas circuit. Comput. Math. Appl. 62(3), 961–970 (2011)
A.G. Radwan, K.N. Salama, Fractional-order \(RC\) and \(RL\) circuits. Circuits Syst. Signal Process. 31(6), 1901–1915 (2012)
A.G. Radwan, A. Shamim, K.N. Salama, Theory of fractional order elements based impedance matching networks. IEEE Microwav. Wirel. Compon. Lett. 21(3), 120–122 (2011)
A.G. Radwan, A.M. Soliman, A.S. Elwakil, A. Sedeek, On the stability of linear systems with fractional-order elements. Chaos Solitons Fractals 40(5), 2317–2328 (2009)
D. Saha, D. Mondal, S. Sen, Effect of initialization on a class of fractional order systems: experimental verification and dependence on nature of past history and system parameters. Circuits Syst. Signal Process. 32(4), 1501–1522 (2013)
R. Sallen, E. Key, A practical method of designing rc active filters. IRE Trans. Circuit Theory 2(1), 74–85 (1955)
A.S. Sedra, P.O. Brackett, Filter Theory and Design: Active and Passive (Matrix Publishers, Portland, 1978)
A. Soltan, A.G. Radwan, A.M. Soliman, Butterworth passive filter in the fractional-order, in 2011 International Conference on Microelectronics (ICM), (IEEE, 2011) pp. 1–5
A. Soltan, A.G. Radwan, A.M. Soliman, Fractional order filter with two fractional elements of dependant orders. Microelectron. J. 43(11), 818–827 (2012)
A. Soltan, A.G. Radwan, A.M. Soliman, Measurement fractional order Sallen–Key filters. Int. J. Electr. Electron. Sci. Eng. 7(12), 2–6 (2013)
A. Soltan, A. Radwan, A. Soliman, CCII based KHN fractional order filter, in 2013 IEEE 56th International Midwest Symposium on Circuits and Systems (MWSCAS) (2013), pp. 197–200
A. Soltan, A.G. Radwan, A.M. Soliman, CCII based fractional filters of different orders. J. Adv. Res. 5(2), 157–164 (2014)
M.P. Tripathi, V.K. Baranwal, R.K. Pandey, O.P. Singh, A new numerical algorithm to solve fractional differential equations based on operational matrix of generalized hat functions. Commun. Nonlinear Sci. Numer. Simul. 18(6), 1327–1340 (2013)
X. Zhang, L. Liu, Y. Wu, The uniqueness of positive solution for a singular fractional differential system involving derivatives. Commun. Nonlinear Sci. Numer. Simul. 18(6), 1400–1409 (2013)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Soltan, A., Radwan, A.G. & Soliman, A.M. Fractional Order Sallen–Key and KHN Filters: Stability and Poles Allocation. Circuits Syst Signal Process 34, 1461–1480 (2015). https://doi.org/10.1007/s00034-014-9925-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00034-014-9925-z